{"title":"In Situ Reprogramming of Neurons and Glia - A Risk in Altering Memory and Personality?","authors":"Bor Luen Tang","doi":"10.1080/21507740.2023.2257159","DOIUrl":null,"url":null,"abstract":"<p><p>The recent emergence of reprogramming technologies to convert brain cell types or epigenetically alter neurons and neural progenitors in vivo and in situ hold significant promises in brain repair and neuronal aging reversal. However, given the significant epigenetic and transcriptomic changes to components of the existing neuronal cells and network, we question if these reprogramming technology might inadvertently alter or erase memory engrams, conceivably resulting in changes in narrative identity or personality. We suggest that the nature of these alterations might be less predictable compared to memory and personality changes known to be associated with diseases, drugs or brain stimulation therapies. While research in applying reprogramming technologies to neurological ailments and aging should continue, more targeted analyses should be put in place in animal experiments to gauge the severity and degree of memory alterations, and appropriate risk and benefit analyses should be conducted before these technologies move into human trials.</p>","PeriodicalId":39022,"journal":{"name":"AJOB Neuroscience","volume":" ","pages":"90-95"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJOB Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21507740.2023.2257159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
The recent emergence of reprogramming technologies to convert brain cell types or epigenetically alter neurons and neural progenitors in vivo and in situ hold significant promises in brain repair and neuronal aging reversal. However, given the significant epigenetic and transcriptomic changes to components of the existing neuronal cells and network, we question if these reprogramming technology might inadvertently alter or erase memory engrams, conceivably resulting in changes in narrative identity or personality. We suggest that the nature of these alterations might be less predictable compared to memory and personality changes known to be associated with diseases, drugs or brain stimulation therapies. While research in applying reprogramming technologies to neurological ailments and aging should continue, more targeted analyses should be put in place in animal experiments to gauge the severity and degree of memory alterations, and appropriate risk and benefit analyses should be conducted before these technologies move into human trials.