Machine Learning-Guided Differentiation Therapy Targets Cancer Stem Cells in Colorectal Cancers.

Saptarshi Sinha, Joshua Alcantara, Kevin Perry, Vanessa Castillo, Annelies Ondersma, Satarupa Banerjee, Ella McLaren, Celia R Espinoza, Sahar Taheri, Eleadah Vidales, Courtney Tindle, Adel Adel, Siamak Amirfakhri, Joseph R Sawires, Jerry Yang, Michael Bouvet, Pradipta Ghosh
{"title":"Machine Learning-Guided Differentiation Therapy Targets Cancer Stem Cells in Colorectal Cancers.","authors":"Saptarshi Sinha, Joshua Alcantara, Kevin Perry, Vanessa Castillo, Annelies Ondersma, Satarupa Banerjee, Ella McLaren, Celia R Espinoza, Sahar Taheri, Eleadah Vidales, Courtney Tindle, Adel Adel, Siamak Amirfakhri, Joseph R Sawires, Jerry Yang, Michael Bouvet, Pradipta Ghosh","doi":"10.1101/2023.09.13.557628","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances in artificial intelligence (AI) within cancer research, its application toward realizing differentiation therapy in solid tumors remains limited. Using colorectal cancer (CRC) as a model, we developed a machine learning (ML) framework, <b><i>CANDiT</i></b> ( <i>Cancer Associated Nodes for Differentiation Targeting</i> ), to selectively induce differentiation and death of cancer stem cells (CSCs)-a key obstacle to durable response. Centering on one node, <i>CDX2</i> , a master differentiation factor lost in high-risk, poorly differentiated CRCs, we built a transcriptomic network to identify therapeutic strategies for CDX2 restoration. Network-based prioritization identified <i>PRKAB1</i> , a stress polarity sensor, as a top target. A clinical-grade PRKAB1 agonist reprogrammed transcriptional networks, induced crypt differentiation, and selectively eliminated CDX2-low CSCs in CRC cell lines, xenografts and patient-derived organoids (PDOs). Multivariate analyses in PDOs revealed a strong therapeutic index, linking efficacy (IC₅₀) to the biomarker-defined CDX2-low state. A 50-gene response signature-derived from an integrated analyses of all three models and trained across multiple datasets-revealed that CDX2 restoration therapy may translate into a ∼50% reduction in recurrence and mortality risk. Mechanistically, treatment activated a differentiation-associated stress polarity signaling axis while dismantling Wnt and YAP-driven stemness programs essential to CSC survival. Thus, <i>CANDiT</i> offers a scalable path to CSC-directed therapy in solid tumors by translating transcriptomic vulnerabilities into precision treatments.</p><p><strong>Graphic abstract: </strong></p><p><strong>One sentence summary: </strong>In this work, Sinha et al. introduce a machine learning-guided framework to identify and target transcriptomic vulnerabilities in colorectal cancer, demonstrating that differentiation therapy selectively eliminates cancer stem cells and reduces recurrence risk.</p><p><strong>Highlights: </strong>An ML framework ( <i>CANDiT</i> ) identifies target for differentiation therapy for CRCs Therapy induces crypt differentiation and CSC-specific cytotoxicityCDX2-low state predicts therapeutic response; restoration improves prognosisTherapy dismantles stemness via reactivation of stress polarity signaling.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515918/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.13.557628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advances in artificial intelligence (AI) within cancer research, its application toward realizing differentiation therapy in solid tumors remains limited. Using colorectal cancer (CRC) as a model, we developed a machine learning (ML) framework, CANDiT ( Cancer Associated Nodes for Differentiation Targeting ), to selectively induce differentiation and death of cancer stem cells (CSCs)-a key obstacle to durable response. Centering on one node, CDX2 , a master differentiation factor lost in high-risk, poorly differentiated CRCs, we built a transcriptomic network to identify therapeutic strategies for CDX2 restoration. Network-based prioritization identified PRKAB1 , a stress polarity sensor, as a top target. A clinical-grade PRKAB1 agonist reprogrammed transcriptional networks, induced crypt differentiation, and selectively eliminated CDX2-low CSCs in CRC cell lines, xenografts and patient-derived organoids (PDOs). Multivariate analyses in PDOs revealed a strong therapeutic index, linking efficacy (IC₅₀) to the biomarker-defined CDX2-low state. A 50-gene response signature-derived from an integrated analyses of all three models and trained across multiple datasets-revealed that CDX2 restoration therapy may translate into a ∼50% reduction in recurrence and mortality risk. Mechanistically, treatment activated a differentiation-associated stress polarity signaling axis while dismantling Wnt and YAP-driven stemness programs essential to CSC survival. Thus, CANDiT offers a scalable path to CSC-directed therapy in solid tumors by translating transcriptomic vulnerabilities into precision treatments.

Graphic abstract:

One sentence summary: In this work, Sinha et al. introduce a machine learning-guided framework to identify and target transcriptomic vulnerabilities in colorectal cancer, demonstrating that differentiation therapy selectively eliminates cancer stem cells and reduces recurrence risk.

Highlights: An ML framework ( CANDiT ) identifies target for differentiation therapy for CRCs Therapy induces crypt differentiation and CSC-specific cytotoxicityCDX2-low state predicts therapeutic response; restoration improves prognosisTherapy dismantles stemness via reactivation of stress polarity signaling.

分化结直肠癌癌症干细胞的网络引导治疗。
分化疗法的治疗潜力在血液系统恶性肿瘤中得到了认可,但在实体瘤中却没有。以结直肠癌(CRC)为例,我们概述了一种无偏的基于网络的方法来追踪、分化和选择性靶向癌症干细胞(CSC)。建立转录组学网络的目的是识别可以恢复CDX2表达的治疗扰动,CDX2是一种转录因子,其缺失可识别低分化(CSC富集)CRC,其恢复可将死亡/复发风险降低50%。当与临床级药物接触时,首选靶点可预测地改变网络,诱导CDX2和隐窝分化,并对CDX2阴性模型(CRC细胞系、小鼠异种移植和患者衍生的类器官;PDO)表现出令人惊讶的选择性细胞毒性。使用多变量分析在PDO中证实了疗效(IC50)和生物标志物(CDX2低状态)有效配对的潜力。治疗反应的50个基因特征表明,CDX2恢复治疗有望将死亡率/复发风险降低约50%。我们得出的结论是,CDX2的恢复选择性地触发结直肠癌干细胞的分化和死亡,通过这样做,这种网络引导的方法在实体瘤中确定了一流的分化治疗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信