{"title":"Characterization of fatty acid forms using benchtop NMR in omega-3 oil supplements","authors":"Carla Remy, Saïda Danoun, Mathieu Delample, Cameron Morris, Véronique Gilard, Stéphane Balayssac","doi":"10.1002/mrc.5398","DOIUrl":null,"url":null,"abstract":"<p>Omega-3 fatty acid supplements, such as fish oil and plant-based oils, have gained popularity because of their potential health benefits. However, the quality and composition of these supplements can vary widely, particularly in terms of the two main forms of omega-3 fatty acids: triacylglycerols (TAGs) and ethyl esters (EEs). TAGs are the natural form found in fish oil but are prone to oxidation, whereas EEs are more stable but less well absorbed by the body. Differentiating between these forms is crucial for assessing the efficacy and tolerance of omega-3 supplements. This article describes a novel approach to differentiate between TAG and EE forms of omega-3 fatty acids in dietary supplements, utilizing a 60-MHz benchtop nuclear magnetic resonance (NMR) spectrometer. The proposed method using <sup>1</sup>H and <sup>1</sup>H-<sup>1</sup>H COSY NMR provides a quick and accurate approach to screen the forms of omega-3 fatty acids and evaluate their ratios. The presence of diacylglycerol (DAGs) in some supplements was also highlighted by this method and adds some information about the process used (i.e., esterification/enrichment). The affordability and user-friendliness of benchtop NMR equipment make this method feasible for food processing companies or quality control laboratories. In this study, 24 oil supplements were analyzed using NMR analysis in order to demonstrate the potential of this method for the differentiation of TAG and EE forms in omega-3 supplements.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 5","pages":"328-336"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5398","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5398","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Omega-3 fatty acid supplements, such as fish oil and plant-based oils, have gained popularity because of their potential health benefits. However, the quality and composition of these supplements can vary widely, particularly in terms of the two main forms of omega-3 fatty acids: triacylglycerols (TAGs) and ethyl esters (EEs). TAGs are the natural form found in fish oil but are prone to oxidation, whereas EEs are more stable but less well absorbed by the body. Differentiating between these forms is crucial for assessing the efficacy and tolerance of omega-3 supplements. This article describes a novel approach to differentiate between TAG and EE forms of omega-3 fatty acids in dietary supplements, utilizing a 60-MHz benchtop nuclear magnetic resonance (NMR) spectrometer. The proposed method using 1H and 1H-1H COSY NMR provides a quick and accurate approach to screen the forms of omega-3 fatty acids and evaluate their ratios. The presence of diacylglycerol (DAGs) in some supplements was also highlighted by this method and adds some information about the process used (i.e., esterification/enrichment). The affordability and user-friendliness of benchtop NMR equipment make this method feasible for food processing companies or quality control laboratories. In this study, 24 oil supplements were analyzed using NMR analysis in order to demonstrate the potential of this method for the differentiation of TAG and EE forms in omega-3 supplements.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.