Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Iqbal Kaur, Parveen Lata, Kulvinder Singh
{"title":"Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures","authors":"Iqbal Kaur,&nbsp;Parveen Lata,&nbsp;Kulvinder Singh","doi":"10.1186/s40712-020-00122-2","DOIUrl":null,"url":null,"abstract":"<p>The aim of the present investigation is to examine the memory-dependent derivatives (MDD) in 2D transversely isotropic homogeneous magneto thermoelastic medium with two temperatures. The problem is solved using Laplace transforms and Fourier transform technique. In order to estimate the nature of the displacements, stresses and temperature distributions in the physical domain, an efficient approximate numerical inverse Fourier and Laplace transform technique is adopted. The distribution of displacements, temperature and stresses in the homogeneous medium in the context of generalized thermoelasticity using LS (Lord-Shulman) theory is discussed and obtained in analytical form. The effect of memory-dependent derivatives is represented graphically.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-020-00122-2","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-020-00122-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 16

Abstract

The aim of the present investigation is to examine the memory-dependent derivatives (MDD) in 2D transversely isotropic homogeneous magneto thermoelastic medium with two temperatures. The problem is solved using Laplace transforms and Fourier transform technique. In order to estimate the nature of the displacements, stresses and temperature distributions in the physical domain, an efficient approximate numerical inverse Fourier and Laplace transform technique is adopted. The distribution of displacements, temperature and stresses in the homogeneous medium in the context of generalized thermoelasticity using LS (Lord-Shulman) theory is discussed and obtained in analytical form. The effect of memory-dependent derivatives is represented graphically.

Abstract Image

双温度磁热弹性横各向同性介质的记忆依赖导数方法
本研究的目的是研究具有两种温度的二维横向各向同性均匀磁热弹性介质中的记忆相关导数(MDD)。利用拉普拉斯变换和傅里叶变换技术解决了这个问题。为了在物理域中估计位移、应力和温度分布的性质,采用了一种有效的近似数值傅里叶反变换和拉普拉斯变换技术。本文用LS (Lord-Shulman)理论讨论了广义热弹性条件下均匀介质中位移、温度和应力的分布,并给出了解析形式。记忆相关导数的影响用图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信