Cameron C Scott, Vaibhav Wasnik, Paula Nunes-Hassler, Nicolas Demaurex, Karsten Kruse, Jean Gruenberg
{"title":"Calcium storage in multivesicular endo-lysosome.","authors":"Cameron C Scott, Vaibhav Wasnik, Paula Nunes-Hassler, Nicolas Demaurex, Karsten Kruse, Jean Gruenberg","doi":"10.1088/1478-3975/acfe6a","DOIUrl":null,"url":null,"abstract":"<p><p>It is now established that endo-lysosomes, also referred to as late endosomes, serve as intracellular calcium store, in addition to the endoplasmic reticulum. While abundant calcium-binding proteins provide the latter compartment with its calcium storage capacity, essentially nothing is known about the mechanism responsible for calcium storage in endo-lysosomes. In this paper, we propose that the structural organization of endo-lysosomal membranes drives the calcium storage capacity of the compartment. Indeed, endo-lysosomes exhibit a characteristic multivesicular ultrastructure, with intralumenal membranes providing a large amount of additional bilayer surface. We used a theoretical approach to investigate the calcium storage capacity of endosomes, using known calcium binding affinities for bilayers and morphological data on endo-lysosome membrane organization. Finally, we tested our predictions experimentally after Sorting Nexin 3 depletion to decrease the intralumenal membrane content. We conclude that the major negatively-charge lipids and proteins of endo-lysosomes serve as calcium-binding molecules in the acidic calcium stores of mammalian cells, while the large surface area of intralumenal membranes provide the necessary storage capacity.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acfe6a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is now established that endo-lysosomes, also referred to as late endosomes, serve as intracellular calcium store, in addition to the endoplasmic reticulum. While abundant calcium-binding proteins provide the latter compartment with its calcium storage capacity, essentially nothing is known about the mechanism responsible for calcium storage in endo-lysosomes. In this paper, we propose that the structural organization of endo-lysosomal membranes drives the calcium storage capacity of the compartment. Indeed, endo-lysosomes exhibit a characteristic multivesicular ultrastructure, with intralumenal membranes providing a large amount of additional bilayer surface. We used a theoretical approach to investigate the calcium storage capacity of endosomes, using known calcium binding affinities for bilayers and morphological data on endo-lysosome membrane organization. Finally, we tested our predictions experimentally after Sorting Nexin 3 depletion to decrease the intralumenal membrane content. We conclude that the major negatively-charge lipids and proteins of endo-lysosomes serve as calcium-binding molecules in the acidic calcium stores of mammalian cells, while the large surface area of intralumenal membranes provide the necessary storage capacity.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.