{"title":"Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico","authors":"Cüneyt Türkeş","doi":"10.1002/jmr.3063","DOIUrl":null,"url":null,"abstract":"<p>Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (<i>h</i>CA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within <i>h</i>CA I and II isoforms' active sites. The <i>h</i>CA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with <i>K</i><sub>I</sub>s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, <i>K</i><sub>I</sub> of 0.19 ± 0.01 μM). Moreover, <i>h</i>CA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with <i>K</i><sub>I</sub>s in the range of 0.64 ± 0.08–5.80 ± 0.64 μM compared with AAZ (<i>K</i><sub>I</sub> of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and <i>h</i>CAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug–drug interactions unexpectedly when used in combination with other agents.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KIs spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KIs in the range of 0.64 ± 0.08–5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug–drug interactions unexpectedly when used in combination with other agents.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.