{"title":"Ephedrine alleviates bleomycin-induced pulmonary fibrosis by inhibiting epithelial-mesenchymal transition and restraining NF-κB signaling.","authors":"Hui Tian, Limei Wang, Taoli Fu","doi":"10.2131/jts.48.547","DOIUrl":null,"url":null,"abstract":"Pulmonary fibrosis is a lethal and progressive pulmonary disorder in human beings. Ephedrine is a compound isolated from Ephedra and plays a regulatory role in inflammatory response. This study focused on the anti-pulmonary fibrosis effect of ephedrine and its potential molecular mechanism. After a mouse model of pulmonary fibrosis was established through bleomycin (BLM) induction, the survival percentage, body weight, and pulmonary index were measured. Hematoxylin-eosin staining and Masson's trichrome staining for lung tissues were performed to observe the pathological alterations. The viability of lung epithelial BEAS-2B cells, intracellular production of reactive oxygen species, and the levels of pro-inflammatory cytokines were examined by cell counting kit-8 assays, 2',7'-dichlorofluorescein diacetate (DCF-DA) staining, and enzyme-linked immunosorbent assay, respectively. Immunofluorescence staining was performed to determine E-cadherin and vimentin expression after BLM or ephedrine treatment. The mRNA and protein levels of cytokeratin-8, E-cadherin, α-SMA, and vimentin were subjected to quantitative polymerase chain reaction and immunoblotting. Experimental results revealed that ephedrine treatment rescued the repressive impact of BLM on BEAS-2B cell viability, and ephedrine inhibited BLM-induced overproduction of reactive oxygen species and inflammatory response in BEAS-2B cells. Additionally, ephedrine suppressed epithelial-mesenchymal transition (EMT) process stimulated by BLM treatment, as demonstrated by the reduced α-SMA and vimentin levels together with the increased cytokeratin-8 and E-cadherin levels in BLM + Ephedrine group. In addition, ephedrine inhibited NF-κB and activated Nrf-2 signaling in BLM-treated BEAS-2B cells. Moreover, ephedrine ameliorated pulmonary fibrosis in BLM-induced mice and improved the survival of model mice. In conclusion, ephedrine attenuates BLM-evoked pulmonary fibrosis by repressing EMT process via blocking NF-κB signaling and activating Nrf-2 signaling, suggesting that ephedrine might become a potential anti-pulmonary fibrosis agent in the future.","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"48 10","pages":"547-556"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.48.547","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pulmonary fibrosis is a lethal and progressive pulmonary disorder in human beings. Ephedrine is a compound isolated from Ephedra and plays a regulatory role in inflammatory response. This study focused on the anti-pulmonary fibrosis effect of ephedrine and its potential molecular mechanism. After a mouse model of pulmonary fibrosis was established through bleomycin (BLM) induction, the survival percentage, body weight, and pulmonary index were measured. Hematoxylin-eosin staining and Masson's trichrome staining for lung tissues were performed to observe the pathological alterations. The viability of lung epithelial BEAS-2B cells, intracellular production of reactive oxygen species, and the levels of pro-inflammatory cytokines were examined by cell counting kit-8 assays, 2',7'-dichlorofluorescein diacetate (DCF-DA) staining, and enzyme-linked immunosorbent assay, respectively. Immunofluorescence staining was performed to determine E-cadherin and vimentin expression after BLM or ephedrine treatment. The mRNA and protein levels of cytokeratin-8, E-cadherin, α-SMA, and vimentin were subjected to quantitative polymerase chain reaction and immunoblotting. Experimental results revealed that ephedrine treatment rescued the repressive impact of BLM on BEAS-2B cell viability, and ephedrine inhibited BLM-induced overproduction of reactive oxygen species and inflammatory response in BEAS-2B cells. Additionally, ephedrine suppressed epithelial-mesenchymal transition (EMT) process stimulated by BLM treatment, as demonstrated by the reduced α-SMA and vimentin levels together with the increased cytokeratin-8 and E-cadherin levels in BLM + Ephedrine group. In addition, ephedrine inhibited NF-κB and activated Nrf-2 signaling in BLM-treated BEAS-2B cells. Moreover, ephedrine ameliorated pulmonary fibrosis in BLM-induced mice and improved the survival of model mice. In conclusion, ephedrine attenuates BLM-evoked pulmonary fibrosis by repressing EMT process via blocking NF-κB signaling and activating Nrf-2 signaling, suggesting that ephedrine might become a potential anti-pulmonary fibrosis agent in the future.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.