{"title":"Low-Latency Active Noise Control Using Attentive Recurrent Network","authors":"Hao Zhang;Ashutosh Pandey;De Liang Wang","doi":"10.1109/TASLP.2023.3244528","DOIUrl":null,"url":null,"abstract":"Processing latency is a critical issue for active noise control (ANC) due to the causality constraint of ANC systems. This paper addresses low-latency ANC in the context of deep learning (i.e. deep ANC). A time-domain method using an attentive recurrent network (ARN) is employed to perform deep ANC with smaller frame sizes, thus reducing algorithmic latency of deep ANC. In addition, we introduce a delay-compensated training to perform ANC using predicted noise for several milliseconds. Moreover, a revised overlap-add method is utilized during signal resynthesis to avoid the latency introduced due to overlaps between neighboring time frames. Experimental results show the effectiveness of the proposed strategies for achieving low-latency deep ANC. Combining the proposed strategies is capable of yielding zero, even negative, algorithmic latency without affecting ANC performance much, thus alleviating the causality constraint in ANC design.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"31 ","pages":"1114-1123"},"PeriodicalIF":4.1000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10043733","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10043733/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 3
Abstract
Processing latency is a critical issue for active noise control (ANC) due to the causality constraint of ANC systems. This paper addresses low-latency ANC in the context of deep learning (i.e. deep ANC). A time-domain method using an attentive recurrent network (ARN) is employed to perform deep ANC with smaller frame sizes, thus reducing algorithmic latency of deep ANC. In addition, we introduce a delay-compensated training to perform ANC using predicted noise for several milliseconds. Moreover, a revised overlap-add method is utilized during signal resynthesis to avoid the latency introduced due to overlaps between neighboring time frames. Experimental results show the effectiveness of the proposed strategies for achieving low-latency deep ANC. Combining the proposed strategies is capable of yielding zero, even negative, algorithmic latency without affecting ANC performance much, thus alleviating the causality constraint in ANC design.
期刊介绍:
The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.