Experimental measurements of non-Newtonian fluid flow through a stenotic tube

IF 2.2 4区 工程技术 Q2 MECHANICS
Imane Trea, Mohamed Mahfoud, Fadila Haddad
{"title":"Experimental measurements of non-Newtonian fluid flow through a stenotic tube","authors":"Imane Trea,&nbsp;Mohamed Mahfoud,&nbsp;Fadila Haddad","doi":"10.1007/s13367-022-00038-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an experimental study of the laminar flow of a non-Newtonian fluid through 75% (by area reduction) stenotic tubes. The fluid behaviour was described by the Herschel Bulkey non-Newtonian model. The non-Newtonian fluids were aqueous solutions of 0.1% Carbopol 940. Upstream flow conditions were steady and spanned a range of generalized Reynolds numbers Reg from 0.20 to 13.66. The velocity profiles were measured with a Laser Doppler Anemometry (LDA). This study allows us to see locally the influence of the geometry and the non-Newtonian character of the fluid on the velocity profiles, the pressure drops and flow resistance. From the experimental data, the frictional resistance decreases with increasing generalized Reynolds number Reg and resistance gave a weak value in a stenotic tube as compared to the flow in a simple tube. At the level of stenosis, a correlation relating of the Euler number to the generalized Reynolds number is developed. To compare the upstream and downstream parts of the stenosis, it is preferable to represent the pressure drops by the friction factor f. This factor f in upstream and downstream decreases linearly with the generalized Reynolds number Reg.</p></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"34 4","pages":"317 - 326"},"PeriodicalIF":2.2000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13367-022-00038-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-022-00038-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an experimental study of the laminar flow of a non-Newtonian fluid through 75% (by area reduction) stenotic tubes. The fluid behaviour was described by the Herschel Bulkey non-Newtonian model. The non-Newtonian fluids were aqueous solutions of 0.1% Carbopol 940. Upstream flow conditions were steady and spanned a range of generalized Reynolds numbers Reg from 0.20 to 13.66. The velocity profiles were measured with a Laser Doppler Anemometry (LDA). This study allows us to see locally the influence of the geometry and the non-Newtonian character of the fluid on the velocity profiles, the pressure drops and flow resistance. From the experimental data, the frictional resistance decreases with increasing generalized Reynolds number Reg and resistance gave a weak value in a stenotic tube as compared to the flow in a simple tube. At the level of stenosis, a correlation relating of the Euler number to the generalized Reynolds number is developed. To compare the upstream and downstream parts of the stenosis, it is preferable to represent the pressure drops by the friction factor f. This factor f in upstream and downstream decreases linearly with the generalized Reynolds number Reg.

Abstract Image

非牛顿流体通过狭窄管的实验测量
本文对非牛顿流体通过75%(面积缩小)狭窄管的层流进行了实验研究。流体行为由Herschel Bulkey非牛顿模型描述。非牛顿流体为0.1%卡波波尔940的水溶液。上游流动条件稳定,广义雷诺数Reg范围为0.20 ~ 13.66。用激光多普勒测速仪(LDA)测量了风速分布。这项研究使我们能够在局部看到流体的几何形状和非牛顿特性对速度分布、压降和流动阻力的影响。从实验数据来看,摩擦阻力随广义雷诺数Reg的增加而减小,与简单管中的流动相比,狭窄管中的阻力值较小。在狭窄水平上,建立了欧拉数与广义雷诺数的相关关系。为了比较狭窄的上下游部分,最好用摩擦系数f来表示压降。该系数f在上下游随广义雷诺数Reg线性减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korea-Australia Rheology Journal
Korea-Australia Rheology Journal 工程技术-高分子科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信