{"title":"Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data.","authors":"Haoran Xue, Xiaotong Shen, Wei Pan","doi":"10.1080/01621459.2023.2183127","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptome-wide association studies (TWAS) have recently emerged as a popular tool to discover (putative) causal genes by integrating an outcome GWAS dataset with another gene expression/transcriptome GWAS (called eQTL) dataset. In our motivating and target application, we'd like to identify causal genes for low-density lipoprotein cholesterol (LDL), which is crucial for developing new treatments for hyperlipidemia and cardiovascular diseases. The statistical principle underlying TWAS is (two-sample) two-stage least squares (2SLS) using multiple correlated SNPs as instrumental variables (IVs); it is closely related to typical (two-sample) Mendelian randomization (MR) using independent SNPs as IVs, which is expected to be impractical and lower-powered for TWAS (and some other) applications. However, often some of the SNPs used may not be valid IVs, e.g. due to the widespread pleiotropy of their direct effects on the outcome not mediated through the gene of interest, leading to false conclusions by TWAS (or MR). Building on recent advances in sparse regression, we propose a robust and efficient inferential method to account for both hidden confounding and some invalid IVs via two-stage constrained maximum likelihood (2ScML), an extension of 2SLS. We first develop the proposed method with individual-level data, then extend it both theoretically and computationally to GWAS summary data for the most popular two-sample TWAS design, to which almost all existing robust IV regression methods are however not applicable. We show that the proposed method achieves asymptotically valid statistical inference on causal effects, demonstrating its wider applicability and superior finite-sample performance over the standard 2SLS/TWAS (and MR). We apply the methods to identify putative causal genes for LDL by integrating large-scale lipid GWAS summary data with eQTL data.</p>","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"118 543","pages":"1525-1537"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557939/pdf/nihms-1877198.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2023.2183127","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
Transcriptome-wide association studies (TWAS) have recently emerged as a popular tool to discover (putative) causal genes by integrating an outcome GWAS dataset with another gene expression/transcriptome GWAS (called eQTL) dataset. In our motivating and target application, we'd like to identify causal genes for low-density lipoprotein cholesterol (LDL), which is crucial for developing new treatments for hyperlipidemia and cardiovascular diseases. The statistical principle underlying TWAS is (two-sample) two-stage least squares (2SLS) using multiple correlated SNPs as instrumental variables (IVs); it is closely related to typical (two-sample) Mendelian randomization (MR) using independent SNPs as IVs, which is expected to be impractical and lower-powered for TWAS (and some other) applications. However, often some of the SNPs used may not be valid IVs, e.g. due to the widespread pleiotropy of their direct effects on the outcome not mediated through the gene of interest, leading to false conclusions by TWAS (or MR). Building on recent advances in sparse regression, we propose a robust and efficient inferential method to account for both hidden confounding and some invalid IVs via two-stage constrained maximum likelihood (2ScML), an extension of 2SLS. We first develop the proposed method with individual-level data, then extend it both theoretically and computationally to GWAS summary data for the most popular two-sample TWAS design, to which almost all existing robust IV regression methods are however not applicable. We show that the proposed method achieves asymptotically valid statistical inference on causal effects, demonstrating its wider applicability and superior finite-sample performance over the standard 2SLS/TWAS (and MR). We apply the methods to identify putative causal genes for LDL by integrating large-scale lipid GWAS summary data with eQTL data.
期刊介绍:
Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA .
JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.