Microparticle electrical conductivity measurement using optoelectronic tweezers.

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Journal of Applied Physics Pub Date : 2023-09-21 Epub Date: 2023-09-19 DOI:10.1063/5.0169565
Wei Ren, Mohammad Asif Zaman, Mo Wu, Michael Anthony Jensen, Ronald Wayne Davis, Lambertus Hesselink
{"title":"Microparticle electrical conductivity measurement using optoelectronic tweezers.","authors":"Wei Ren, Mohammad Asif Zaman, Mo Wu, Michael Anthony Jensen, Ronald Wayne Davis, Lambertus Hesselink","doi":"10.1063/5.0169565","DOIUrl":null,"url":null,"abstract":"<p><p>When it comes to simulate or calculate an optoelectronic tweezer (OET) response for a microparticle suspended in a given medium, a precise electrical conductivity (later referred to as conductivity) value for the microparticle is critical. However, there are not well-established measurements or well-referenced values for microparticle conductivities in the OET realm. Thus, we report a method based on measuring the escape velocity of a microparticle with a standard OET system to calculate its conductivity. A widely used 6 <i>μ</i>m polystyrene bead (PSB) is used for the study. The conductivity values are found to be invariant around 2×10<sup>-3</sup> S/m across multiple different aqueous media, which helps clarify the ambiguity in the usage of PSB conductivity. Our convenient approach could principally be applied for the measurement of multiple unknown OET-relevant material properties of microparticle-medium systems with various OET responses, which can be beneficial to carry out more accurate characterization in relevant fields.</p>","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"134 11","pages":"113104"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0169565","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

When it comes to simulate or calculate an optoelectronic tweezer (OET) response for a microparticle suspended in a given medium, a precise electrical conductivity (later referred to as conductivity) value for the microparticle is critical. However, there are not well-established measurements or well-referenced values for microparticle conductivities in the OET realm. Thus, we report a method based on measuring the escape velocity of a microparticle with a standard OET system to calculate its conductivity. A widely used 6 μm polystyrene bead (PSB) is used for the study. The conductivity values are found to be invariant around 2×10-3 S/m across multiple different aqueous media, which helps clarify the ambiguity in the usage of PSB conductivity. Our convenient approach could principally be applied for the measurement of multiple unknown OET-relevant material properties of microparticle-medium systems with various OET responses, which can be beneficial to carry out more accurate characterization in relevant fields.

使用光电镊子测量微粒电导率。
当模拟或计算悬浮在给定介质中的微粒的光电镊子(OET)响应时,微粒的精确电导率(后来称为电导率)值至关重要。然而,在OET领域中,微粒导电率没有公认的测量值或参考值。因此,我们报道了一种基于用标准OET系统测量微粒逃逸速度来计算其电导率的方法。广泛使用的6 μm聚苯乙烯珠(PSB)进行研究。电导率值在2×10-3附近是不变的 在多种不同的水性介质中的S/m,这有助于澄清PSB电导率使用中的模糊性。我们的方便方法主要可用于测量具有各种OET响应的微粒介质系统的多种未知OET相关材料性质,这有利于在相关领域进行更准确的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信