Analysis and implementation of the DynDiff tool when comparing versions of ontology.

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Sara Diaz Benavides, Silvio D Cardoso, Marcos Da Silveira, Cédric Pruski
{"title":"Analysis and implementation of the DynDiff tool when comparing versions of ontology.","authors":"Sara Diaz Benavides, Silvio D Cardoso, Marcos Da Silveira, Cédric Pruski","doi":"10.1186/s13326-023-00295-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ontologies play a key role in the management of medical knowledge because they have the properties to support a wide range of knowledge-intensive tasks. The dynamic nature of knowledge requires frequent changes to the ontologies to keep them up-to-date. The challenge is to understand and manage these changes and their impact on depending systems well in order to handle the growing volume of data annotated with ontologies and the limited documentation describing the changes.</p><p><strong>Methods: </strong>We present a method to detect and characterize the changes occurring between different versions of an ontology together with an ontology of changes entitled DynDiffOnto, designed according to Semantic Web best practices and FAIR principles. We further describe the implementation of the method and the evaluation of the tool with different ontologies from the biomedical domain (i.e. ICD9-CM, MeSH, NCIt, SNOMEDCT, GO, IOBC and CIDO), showing its performance in terms of time execution and capacity to classify ontological changes, compared with other state-of-the-art approaches.</p><p><strong>Results: </strong>The experiments show a top-level performance of DynDiff for large ontologies and a good performance for smaller ones, with respect to execution time and capability to identify complex changes. In this paper, we further highlight the impact of ontology matchers on the diff computation and the possibility to parameterize the matcher in DynDiff, enabling the possibility of benefits from state-of-the-art matchers.</p><p><strong>Conclusion: </strong>DynDiff is an efficient tool to compute differences between ontology versions and classify these differences according to DynDiffOnto concepts. This work also contributes to a better understanding of ontological changes through DynDiffOnto, which was designed to express the semantics of the changes between versions of an ontology and can be used to document the evolution of an ontology.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"14 1","pages":"15"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-023-00295-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ontologies play a key role in the management of medical knowledge because they have the properties to support a wide range of knowledge-intensive tasks. The dynamic nature of knowledge requires frequent changes to the ontologies to keep them up-to-date. The challenge is to understand and manage these changes and their impact on depending systems well in order to handle the growing volume of data annotated with ontologies and the limited documentation describing the changes.

Methods: We present a method to detect and characterize the changes occurring between different versions of an ontology together with an ontology of changes entitled DynDiffOnto, designed according to Semantic Web best practices and FAIR principles. We further describe the implementation of the method and the evaluation of the tool with different ontologies from the biomedical domain (i.e. ICD9-CM, MeSH, NCIt, SNOMEDCT, GO, IOBC and CIDO), showing its performance in terms of time execution and capacity to classify ontological changes, compared with other state-of-the-art approaches.

Results: The experiments show a top-level performance of DynDiff for large ontologies and a good performance for smaller ones, with respect to execution time and capability to identify complex changes. In this paper, we further highlight the impact of ontology matchers on the diff computation and the possibility to parameterize the matcher in DynDiff, enabling the possibility of benefits from state-of-the-art matchers.

Conclusion: DynDiff is an efficient tool to compute differences between ontology versions and classify these differences according to DynDiffOnto concepts. This work also contributes to a better understanding of ontological changes through DynDiffOnto, which was designed to express the semantics of the changes between versions of an ontology and can be used to document the evolution of an ontology.

Abstract Image

Abstract Image

Abstract Image

比较本体版本时DynDiff工具的分析和实现。
背景:本体论在医学知识管理中发挥着关键作用,因为它们具有支持广泛的知识密集型任务的特性。知识的动态性质要求对本体进行频繁的更改,以使其保持最新状态。挑战在于理解和管理这些变化及其对依赖系统的影响,以便处理越来越多的用本体注释的数据和描述这些变化的有限文档。方法:我们提出了一种检测和表征不同版本本体之间发生的变化的方法,以及根据语义网最佳实践和FAIR原则设计的名为DynDiffOnto的变化本体。我们进一步描述了该方法的实现以及该工具在生物医学领域的不同本体(即ICD9-CM、MeSH、NCIt、SNOMEDCT、GO、IOBC和CIDO)的评估,与其他最先进的方法相比,显示了其在时间执行和对本体变化进行分类的能力方面的性能。结果:实验表明,在执行时间和识别复杂变化的能力方面,DynDiff对大型本体具有顶级性能,对小型本体具有良好性能。在本文中,我们进一步强调了本体匹配器对diff计算的影响,以及在DynDiff中参数化匹配器的可能性,从而有可能从最先进的匹配器中获益。结论:DynDiff是一种计算本体版本之间差异并根据DynDiffOnto概念对这些差异进行分类的有效工具。这项工作也有助于通过DynDiffOnto更好地理解本体论的变化,DynDiff Onto旨在表达本体论版本之间变化的语义,并可用于记录本体论的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信