Silpa AjayKumar, Arathi C, Resmi K B, Suja C A, Lisha Jose, Vinin N V, Geetha Muttath, M M Musthafa
{"title":"Beam Focal Spot Offset Determination for Linear Accelerators: A Phantom less Method.","authors":"Silpa AjayKumar, Arathi C, Resmi K B, Suja C A, Lisha Jose, Vinin N V, Geetha Muttath, M M Musthafa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of radiotherapy treatment is influenced by the position of beam focal spot; therefore, it is important to verify the beam focal spot periodically. In this study the beam focal spot offset is measured using an electronic portal imaging (EPID) based technique and co- rotational penumbra modulation technique(CPM).</p><p><strong>Materials and methods: </strong>This method utilizes one set of jaws and the multileaf collimator (MLC) to form a symmetric field and then a 180o collimator rotation was utilized to determine the radiation isocenter defined by the jaws and the MLC, respectively. The difference between these two isocentres is then directly correlated with the beam focal spot offset of the linear accelerator. In the current study, the method has been used for Varian ClinaciX and Elekta Versa HD linear accelerators. Since an Elektalinac with the Agility® head does not have two set of jaws, a modified method that making use of one set of diaphragms, the MLC and a full 360o collimator rotation is implemented.</p><p><strong>Result: </strong>The method is validated against CPM and found to be in agreement within 0.00923± 0.009360 mm ( SD) also the method has been found to be reproducible to within 0.0365 mm (SD).</p><p><strong>Conclusion: </strong>The method could be used for routine quality assurance (QA) to ensure that the beam focal spot offset is in tolerance.</p>","PeriodicalId":53633,"journal":{"name":"The gulf journal of oncology","volume":"1 43","pages":"46-50"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The gulf journal of oncology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of radiotherapy treatment is influenced by the position of beam focal spot; therefore, it is important to verify the beam focal spot periodically. In this study the beam focal spot offset is measured using an electronic portal imaging (EPID) based technique and co- rotational penumbra modulation technique(CPM).
Materials and methods: This method utilizes one set of jaws and the multileaf collimator (MLC) to form a symmetric field and then a 180o collimator rotation was utilized to determine the radiation isocenter defined by the jaws and the MLC, respectively. The difference between these two isocentres is then directly correlated with the beam focal spot offset of the linear accelerator. In the current study, the method has been used for Varian ClinaciX and Elekta Versa HD linear accelerators. Since an Elektalinac with the Agility® head does not have two set of jaws, a modified method that making use of one set of diaphragms, the MLC and a full 360o collimator rotation is implemented.
Result: The method is validated against CPM and found to be in agreement within 0.00923± 0.009360 mm ( SD) also the method has been found to be reproducible to within 0.0365 mm (SD).
Conclusion: The method could be used for routine quality assurance (QA) to ensure that the beam focal spot offset is in tolerance.