Multifunctional slippery photothermal coating

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jun Ma, Jinlong Song
{"title":"Multifunctional slippery photothermal coating","authors":"Jun Ma,&nbsp;Jinlong Song","doi":"10.1016/j.jcis.2023.09.197","DOIUrl":null,"url":null,"abstract":"<div><p>Slippery liquid-infused porous surface (SLIPS) has shown significant application values in various areas and has been commonly obtained by injecting the water-immiscible lubricant into a low-surface-energy modified micro/nano-structured surface. Constrained by the availability of desirable structured substrates or simple preparation schemes, the exploration of SLIPS with multifunctionality and universality that is facile to fabricate and robust in realistic applications remains challenging. Herein, we propose a one-step, fluoride-free and unconventional protocol based on a one-pot reaction of polysilazane (PSZ), silicone oils<span> and multiwalled carbon nanotubes<span> (MWCNT), which creates not only the favorable micro/nano-scale physical structures and surface chemistry for the excellent slippery property (sliding angle &lt; 3°) and robust lubricant retention, but also the superior photothermal responsiveness for the potential multifunctional applications. It has been demonstrated that the proposed multifunctional slippery photothermal coating (MSPC) displayed outstanding potential in corrosion resistance, droplet manipulation and anti/de-icing. We envision that the proposed strategy could be realized in the real-life applications.</span></span></p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"653 ","pages":"Pages 1548-1556"},"PeriodicalIF":9.4000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979723019112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Slippery liquid-infused porous surface (SLIPS) has shown significant application values in various areas and has been commonly obtained by injecting the water-immiscible lubricant into a low-surface-energy modified micro/nano-structured surface. Constrained by the availability of desirable structured substrates or simple preparation schemes, the exploration of SLIPS with multifunctionality and universality that is facile to fabricate and robust in realistic applications remains challenging. Herein, we propose a one-step, fluoride-free and unconventional protocol based on a one-pot reaction of polysilazane (PSZ), silicone oils and multiwalled carbon nanotubes (MWCNT), which creates not only the favorable micro/nano-scale physical structures and surface chemistry for the excellent slippery property (sliding angle < 3°) and robust lubricant retention, but also the superior photothermal responsiveness for the potential multifunctional applications. It has been demonstrated that the proposed multifunctional slippery photothermal coating (MSPC) displayed outstanding potential in corrosion resistance, droplet manipulation and anti/de-icing. We envision that the proposed strategy could be realized in the real-life applications.

Abstract Image

多功能光滑光热涂层。
滑溜液体注入多孔表面(SLIPS)在各个领域显示出显著的应用价值,并且通常通过将水不混溶的润滑剂注入低表面能改性的微/纳米结构表面来获得。受限于所需结构化基底的可用性或简单的制备方案,探索具有多功能性和通用性、易于制造且在实际应用中稳健的SLIPS仍然具有挑战性。在此,我们提出了一种基于聚硅氮烷(PSZ)、硅油和多壁碳纳米管(MWCNT)的一锅反应的一步、无氟和非常规方案,该方案不仅创造了良好的微/纳米物理结构和表面化学性质,具有优异的滑溜性(滑动角
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信