Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons.

IF 3.6 4区 医学 Q3 CELL BIOLOGY
Cellular and Molecular Neurobiology Pub Date : 2023-11-01 Epub Date: 2023-09-22 DOI:10.1007/s10571-023-01405-w
Johann Gross, Marlies Knipper, Birgit Mazurek
{"title":"Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons.","authors":"Johann Gross, Marlies Knipper, Birgit Mazurek","doi":"10.1007/s10571-023-01405-w","DOIUrl":null,"url":null,"abstract":"<p><p>To study key proteins associated with changes in synaptic transmission in the spiral ganglion in tinnitus, we build three gene lists from the GeneCard database: 1. Perception of sound (PoS), 2. Acoustic stimulation (AcouStim), and 3. Tinnitus (Tin). Enrichment analysis by the DAVID database resulted in similar Gene Ontology (GO) terms for cellular components in all gene lists, reflecting synaptic structures known to be involved in auditory processing. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs) identified by the combined score (CS) of the corresponding edges. The top two protein pairs (key proteins) for the PoS are BDNF-GDNF and OTOF-CACNA1D and for the AcouStim process BDNF-NTRK2 and TH-CALB1. The Tin process showed BDNF and NGF as HDPs, with high-score interactions with NTRK1 and NGFR at a comparable level. Compared to the PoS and AcouStim process, the number of HSIPs of key proteins (CS > 90. percentile) increases strongly in Tin. In the PoS and AcouStim networks, BDNF receptor signaling is the dominant pathway, and in the Tin network, the NGF-signaling pathway is of similar importance. Key proteins and their HSIPs are good indicators of biological processes and of signaling pathways characteristic for the normal hearing on the one hand and tinnitus on the other.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-023-01405-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To study key proteins associated with changes in synaptic transmission in the spiral ganglion in tinnitus, we build three gene lists from the GeneCard database: 1. Perception of sound (PoS), 2. Acoustic stimulation (AcouStim), and 3. Tinnitus (Tin). Enrichment analysis by the DAVID database resulted in similar Gene Ontology (GO) terms for cellular components in all gene lists, reflecting synaptic structures known to be involved in auditory processing. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs) identified by the combined score (CS) of the corresponding edges. The top two protein pairs (key proteins) for the PoS are BDNF-GDNF and OTOF-CACNA1D and for the AcouStim process BDNF-NTRK2 and TH-CALB1. The Tin process showed BDNF and NGF as HDPs, with high-score interactions with NTRK1 and NGFR at a comparable level. Compared to the PoS and AcouStim process, the number of HSIPs of key proteins (CS > 90. percentile) increases strongly in Tin. In the PoS and AcouStim networks, BDNF receptor signaling is the dominant pathway, and in the Tin network, the NGF-signaling pathway is of similar importance. Key proteins and their HSIPs are good indicators of biological processes and of signaling pathways characteristic for the normal hearing on the one hand and tinnitus on the other.

Abstract Image

耳鸣候选关键蛋白:螺旋神经节神经元突触传递的生物信息学研究。
为了研究与耳鸣螺旋神经节突触传递变化相关的关键蛋白,我们从GeneCard数据库中建立了三个基因列表:1。声音感知(PoS),2。声学刺激(AcousStim)和3。Tinnitus(锡)。DAVID数据库的富集分析导致所有基因列表中细胞成分的基因本体论(GO)术语相似,反映了已知参与听觉处理的突触结构。STRING蛋白-蛋白相互作用(PPI)网络和Cytoscape数据分析仪用于识别前两个高度蛋白(HDPs)及其通过相应边缘的组合得分(CS)识别的高分相互作用蛋白(HSIP)。PoS的前两个蛋白质对(关键蛋白质)是BDNF-GDNF和OTOF-CACNA1D,以及AcouStim过程的BDNF-NTRK2和TH-CALB1。锡过程显示BDNF和NGF为HDP,与NTRK1和NGFR的高评分相互作用处于可比水平。与PoS和AcouStim过程相比,关键蛋白(CS > 90.百分位)显著增加。在PoS和AcouStim网络中,BDNF受体信号传导是主要途径,而在Tin网络中,NGF信号传导途径具有类似的重要性。关键蛋白及其HSIP是生物学过程和信号通路的良好指标,一方面是正常听力和耳鸣的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信