Gülşah Çalışkan Koç, Hira Yüksel Sarıoğlu, Safiye Nur Dirim, Ravi Pandiselvam
{"title":"Storage of spinach juice agglomerates: Physical, flow, structural, and thermal properties","authors":"Gülşah Çalışkan Koç, Hira Yüksel Sarıoğlu, Safiye Nur Dirim, Ravi Pandiselvam","doi":"10.1111/jtxs.12803","DOIUrl":null,"url":null,"abstract":"<p>The objective of this study was to investigate how the various storage temperatures affected the physical properties, flow characteristics, microstructure, and glass transition temperature of spinach juice agglomerates. For this purpose, spray-dried spinach juice powders were processed to agglomerates by using a modified fluidized bed dryer (1.6 m/s airflow rate, 60°C drying air temperature, 20 min processing time, and with different binder solutions containing agents as maltodextrin, gum Arabic, and whey powder isolate). The analyses were carried out every month throughout 6 months while the spinach juice agglomerates were stored at temperatures of 4, 20, and 35°C. The results revealed that over the storage time, the moisture content and water activity values of the agglomerates were generally under 11% and 0.6, respectively. The color values generally showed a decreasing trend depending on the storage time. The solubility times of the samples stored at 4°C were longer than those of stored at other storage temperatures. The SJA-GA had the lowest HR and CI values and thus the best flowability properties during all storage times. There was no detectable change in the structures of SJA stored at 20°C according to the storage time. Throughout the storage time, it was discovered that the glass transition temperature of all spinach juice agglomerates was remarkably similar. Overall, the investigation revealed that storage at 35°C for 6 months might be suitable because it delivered the intended outcomes such as greater flowability and cohesiveness, and shorter wettability and solubility times.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12803","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to investigate how the various storage temperatures affected the physical properties, flow characteristics, microstructure, and glass transition temperature of spinach juice agglomerates. For this purpose, spray-dried spinach juice powders were processed to agglomerates by using a modified fluidized bed dryer (1.6 m/s airflow rate, 60°C drying air temperature, 20 min processing time, and with different binder solutions containing agents as maltodextrin, gum Arabic, and whey powder isolate). The analyses were carried out every month throughout 6 months while the spinach juice agglomerates were stored at temperatures of 4, 20, and 35°C. The results revealed that over the storage time, the moisture content and water activity values of the agglomerates were generally under 11% and 0.6, respectively. The color values generally showed a decreasing trend depending on the storage time. The solubility times of the samples stored at 4°C were longer than those of stored at other storage temperatures. The SJA-GA had the lowest HR and CI values and thus the best flowability properties during all storage times. There was no detectable change in the structures of SJA stored at 20°C according to the storage time. Throughout the storage time, it was discovered that the glass transition temperature of all spinach juice agglomerates was remarkably similar. Overall, the investigation revealed that storage at 35°C for 6 months might be suitable because it delivered the intended outcomes such as greater flowability and cohesiveness, and shorter wettability and solubility times.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing