{"title":"Biochemical and X-ray analyses of the players involved in the faRel2/aTfaRel2 toxin–antitoxin operon","authors":"Lucia Dominguez-Molina, Ariel Talavera, Albinas Cepauskas, Tatsuaki Kurata, Dannele Echemendia-Blanco, Vasili Hauryliuk, Abel Garcia-Pino","doi":"10.1107/S2053230X23007288","DOIUrl":null,"url":null,"abstract":"<p>The <i>aTfaRel</i>2/<i>faRel</i>2 operon from <i>Coprobacillus</i> sp. D7 encodes a bicistronic type II toxin–antitoxin (TA) module. The FaRel2 toxin is a toxic small alarmone synthetase (toxSAS) that inhibits translation through the pyrophosphorylation of uncharged tRNAs at the 3′-CCA end. The toxin is neutralized by the antitoxin ATfaRel2 through the formation of an inactive TA complex. Here, the production, biophysical analysis and crystallization of ATfaRel2 and FaRel2 as well as of the ATfaRel2–FaRel2 complex are reported. ATfaRel2 is monomeric in solution. The antitoxin crystallized in space group <i>P</i>2<sub>1</sub>2<sub>1</sub>2 with unit-cell parameters <i>a</i> = 53.3, <i>b</i> = 34.2, <i>c</i> = 37.6 Å, and the best crystal diffracted to a resolution of 1.24 Å. Crystals of FaRel2 in complex with APCPP, a nonhydrolysable ATP analogue, belonged to space group <i>P</i>2<sub>1</sub>, with unit-cell parameters <i>a</i> = 31.5, <i>b</i> = 60.6, <i>c</i> = 177.2 Å, β = 90.6°, and diffracted to 2.6 Å resolution. The ATfaRel2–FaRel2<sup>Y128F</sup> complex forms a heterotetramer in solution composed of two toxins and two antitoxins. This complex crystallized in two space groups: <i>F</i>4<sub>1</sub>32, with unit-cell parameters <i>a</i> = <i>b</i> = <i>c</i> = 227.1 Å, and <i>P</i>2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>, with unit-cell parameters <i>a</i> = 51.7, <i>b</i> = 106.2, <i>c</i> = 135.1 Å. The crystals diffracted to 1.98 and 2.1 Å resolution, respectively.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"79 10","pages":"247-256"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X23007288","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The aTfaRel2/faRel2 operon from Coprobacillus sp. D7 encodes a bicistronic type II toxin–antitoxin (TA) module. The FaRel2 toxin is a toxic small alarmone synthetase (toxSAS) that inhibits translation through the pyrophosphorylation of uncharged tRNAs at the 3′-CCA end. The toxin is neutralized by the antitoxin ATfaRel2 through the formation of an inactive TA complex. Here, the production, biophysical analysis and crystallization of ATfaRel2 and FaRel2 as well as of the ATfaRel2–FaRel2 complex are reported. ATfaRel2 is monomeric in solution. The antitoxin crystallized in space group P21212 with unit-cell parameters a = 53.3, b = 34.2, c = 37.6 Å, and the best crystal diffracted to a resolution of 1.24 Å. Crystals of FaRel2 in complex with APCPP, a nonhydrolysable ATP analogue, belonged to space group P21, with unit-cell parameters a = 31.5, b = 60.6, c = 177.2 Å, β = 90.6°, and diffracted to 2.6 Å resolution. The ATfaRel2–FaRel2Y128F complex forms a heterotetramer in solution composed of two toxins and two antitoxins. This complex crystallized in two space groups: F4132, with unit-cell parameters a = b = c = 227.1 Å, and P212121, with unit-cell parameters a = 51.7, b = 106.2, c = 135.1 Å. The crystals diffracted to 1.98 and 2.1 Å resolution, respectively.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.