An efficient system matrix factorization method for scanning diffraction based strain tensor tomography.

IF 1.9 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Axel Henningsson, Stephen A Hall
{"title":"An efficient system matrix factorization method for scanning diffraction based strain tensor tomography.","authors":"Axel Henningsson, Stephen A Hall","doi":"10.1107/S2053273323008136","DOIUrl":null,"url":null,"abstract":"<p><p>Diffraction-based tomographic strain tensor reconstruction problems in which a strain tensor field is determined from measurements made in different crystallographic directions are considered in the context of sparse matrix algebra. Previous work has shown that the estimation of the crystal elastic strain field can be cast as a linear regression problem featuring a computationally involved assembly of a system matrix forward operator. This operator models the perturbation in diffraction signal as a function of spatial strain tensor state. The structure of this system matrix is analysed and a block-partitioned factorization is derived that reveals the forward operator as a sum of weighted scalar projection operators. Moreover, the factorization method is generalized for another diffraction model in which strain and orientation are coupled and can be reconstructed jointly. The proposed block-partitioned factorization method provides a bridge to classical absorption tomography and allows exploitation of standard tomographic ray-tracing libraries for implementation of the forward operator and its adjoint. Consequently, RAM-efficient, GPU-accelerated, on-the-fly strain/orientation tensor reconstruction is made possible, paving the way for higher spatial resolution studies of intragranular deformation.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"542-549"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273323008136","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diffraction-based tomographic strain tensor reconstruction problems in which a strain tensor field is determined from measurements made in different crystallographic directions are considered in the context of sparse matrix algebra. Previous work has shown that the estimation of the crystal elastic strain field can be cast as a linear regression problem featuring a computationally involved assembly of a system matrix forward operator. This operator models the perturbation in diffraction signal as a function of spatial strain tensor state. The structure of this system matrix is analysed and a block-partitioned factorization is derived that reveals the forward operator as a sum of weighted scalar projection operators. Moreover, the factorization method is generalized for another diffraction model in which strain and orientation are coupled and can be reconstructed jointly. The proposed block-partitioned factorization method provides a bridge to classical absorption tomography and allows exploitation of standard tomographic ray-tracing libraries for implementation of the forward operator and its adjoint. Consequently, RAM-efficient, GPU-accelerated, on-the-fly strain/orientation tensor reconstruction is made possible, paving the way for higher spatial resolution studies of intragranular deformation.

Abstract Image

Abstract Image

Abstract Image

基于扫描衍射的应变张量层析的有效系统矩阵分解方法。
在稀疏矩阵代数的背景下,考虑了基于衍射的断层摄影应变张量重建问题,其中应变张量场是根据在不同晶体方向上进行的测量来确定的。先前的工作表明,晶体弹性应变场的估计可以被视为一个线性回归问题,其特征是系统矩阵前向算子的计算组装。该算子将衍射信号中的扰动建模为空间应变张量状态的函数。分析了该系统矩阵的结构,导出了一个分块因子分解,揭示了前向算子是加权标量投影算子的和。此外,将因子分解方法推广到另一个应变和取向耦合的衍射模型,并可以联合重建。所提出的块分割因子分解方法为经典吸收层析成像提供了一座桥梁,并允许利用标准层析射线追踪库来实现正向算子及其伴随算子。因此,RAM高效、GPU加速的动态应变/取向张量重建成为可能,为晶粒内变形的更高空间分辨率研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Crystallographica Section A: Foundations and Advances
Acta Crystallographica Section A: Foundations and Advances CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
2.60
自引率
11.10%
发文量
419
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信