M. S. Dorozhkina, K. V. Baluev, D. D. Kutergin, I. K. Lotov, V. A. Minakov, R. I. Spitsyn, P. V. Tuev, K. V. Lotov
{"title":"Laser Wakefield Acceleration in a Plasma Channel","authors":"M. S. Dorozhkina, K. V. Baluev, D. D. Kutergin, I. K. Lotov, V. A. Minakov, R. I. Spitsyn, P. V. Tuev, K. V. Lotov","doi":"10.3103/S1068335623180057","DOIUrl":null,"url":null,"abstract":"<p>It is shown by numerical simulations that, if a laser pulse from the eXawatt Center for Extreme Light Studies (Sarov) is used as a driver for a laser wakefield accelerator, an electron bunch with a charge of 50 pC can be accelerated to energy of 100 GeV with an energy spread of less than 1%. To this end, it is necessary to form a plasma channel 70 m long with a characteristic radius of 200 μm and a plasma density of 3 × 10<sup>15</sup> cm<sup>–3</sup> on the axis. In a denser plasma, the acceleration rate is higher, but the acceleration length and the resulting energy are smaller. The accelerator parameters can be numerically optimized using a quasistatic model describing the laser pulse in terms of its envelope, which reduces the computation time by several orders of magnitude as compared to complete models.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"50 6","pages":"S715 - S723"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Lebedev Physics Institute","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1068335623180057","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is shown by numerical simulations that, if a laser pulse from the eXawatt Center for Extreme Light Studies (Sarov) is used as a driver for a laser wakefield accelerator, an electron bunch with a charge of 50 pC can be accelerated to energy of 100 GeV with an energy spread of less than 1%. To this end, it is necessary to form a plasma channel 70 m long with a characteristic radius of 200 μm and a plasma density of 3 × 1015 cm–3 on the axis. In a denser plasma, the acceleration rate is higher, but the acceleration length and the resulting energy are smaller. The accelerator parameters can be numerically optimized using a quasistatic model describing the laser pulse in terms of its envelope, which reduces the computation time by several orders of magnitude as compared to complete models.
期刊介绍:
Bulletin of the Lebedev Physics Institute is an international peer reviewed journal that publishes results of new original experimental and theoretical studies on all topics of physics: theoretical physics; atomic and molecular physics; nuclear physics; optics; lasers; condensed matter; physics of solids; biophysics, and others.