Spectral Manifestations of Strong and Especially Strong Magnetic Fields in the Active Prominence on July 24, 1999

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
I. I. Yakovkin, M. A. Hromov, V. G. Lozitsky
{"title":"Spectral Manifestations of Strong and Especially Strong Magnetic Fields in the Active Prominence on July 24, 1999","authors":"I. I. Yakovkin,&nbsp;M. A. Hromov,&nbsp;V. G. Lozitsky","doi":"10.3103/S0884591323050070","DOIUrl":null,"url":null,"abstract":"<p>We present the results of the study of the magnetic field in the active prominence on July 24, 1999 at 07:00 UT, using the observational material obtained on the Echelle spectrograph of the horizontal solar telescope of the Astronomical Observatory of Taras Shevchenko Kyiv National University. Our analysis is based on the study of <i>I</i> ± <i>V</i> profiles of the Hα line, which were related to heights in the range of 11–20 Mm. It was found that the bisectors of the <i>I</i> ± <i>V</i> profiles are non-parallel to each other in majority of places of this prominence. This indicates the inhomogeneity of the magnetic field: with a uniform magnetic field, the named bisectors should be parallel. Moreover, the maximum splitting of bisectors is observed not only in the core of the line (which was found earlier by other authors), but also in its far wings, at distances of 1.5–2.5 Å from the line center. The specified maximum of splitting corresponds to magnetic field of about 3000 G, but this value should be considered only as a lower estimate of the true local magnetic fields. In particular, the second maximum of bisector splitting may indicate that the actual value of Zeeman splitting in small-scale structures with a small filling factor reaches the above value of 1.5–2.5 Å which corresponds to the field strength of almost 100 kG. From our study it follows that evidences on such extremely magnetic fields may not actually be a rare phenomenon, but a rather common one, which, however, can be recorded only under certain favorable observational conditions.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"39 5","pages":"287 - 293"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591323050070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present the results of the study of the magnetic field in the active prominence on July 24, 1999 at 07:00 UT, using the observational material obtained on the Echelle spectrograph of the horizontal solar telescope of the Astronomical Observatory of Taras Shevchenko Kyiv National University. Our analysis is based on the study of I ± V profiles of the Hα line, which were related to heights in the range of 11–20 Mm. It was found that the bisectors of the I ± V profiles are non-parallel to each other in majority of places of this prominence. This indicates the inhomogeneity of the magnetic field: with a uniform magnetic field, the named bisectors should be parallel. Moreover, the maximum splitting of bisectors is observed not only in the core of the line (which was found earlier by other authors), but also in its far wings, at distances of 1.5–2.5 Å from the line center. The specified maximum of splitting corresponds to magnetic field of about 3000 G, but this value should be considered only as a lower estimate of the true local magnetic fields. In particular, the second maximum of bisector splitting may indicate that the actual value of Zeeman splitting in small-scale structures with a small filling factor reaches the above value of 1.5–2.5 Å which corresponds to the field strength of almost 100 kG. From our study it follows that evidences on such extremely magnetic fields may not actually be a rare phenomenon, but a rather common one, which, however, can be recorded only under certain favorable observational conditions.

Abstract Image

1999年7月24日活动日珥中强、特强磁场的光谱表现
我们使用基辅国立大学塔拉斯-舍甫琴科天文台水平太阳望远镜的Echele摄谱仪上获得的观测材料,介绍了1999年7月24日07:00 UT活动日珥磁场的研究结果。我们的分析是基于对Hα线的I±V轮廓的研究,这些轮廓与11–20 Mm范围内的高度有关。我们发现,在这种突出的大多数地方,I±V剖面的平分线彼此不平行。这表明磁场的不均匀性:在均匀的磁场下,命名的平分线应该是平行的。此外,平分线的最大分裂不仅在线的核心(其他作者早些时候发现了这一点),而且在距离线中心1.5–2.5Å的远翼中也观察到。指定的分裂最大值对应于约3000G的磁场,但该值应仅被视为真实局部磁场的较低估计值。特别是,平分线分裂的第二个最大值可能表明,在填充因子较小的小规模结构中,塞曼分裂的实际值达到了1.5–2.5Å的上述值,这相当于几乎100 kG的场强。根据我们的研究,这种极端磁场的证据实际上可能不是一种罕见的现象,但这是一种相当常见的现象,然而,只有在某些有利的观测条件下才能记录下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kinematics and Physics of Celestial Bodies
Kinematics and Physics of Celestial Bodies ASTRONOMY & ASTROPHYSICS-
CiteScore
0.90
自引率
40.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信