{"title":"Poly(ester amide)s from biomass-based 3,4-dihydrocoumarine through Meldrum's acid mediated ketene chemistry","authors":"Zhang-Jun Fan, Ying-Ling Liu","doi":"10.1002/pol.20230344","DOIUrl":null,"url":null,"abstract":"<p>Meldrum's acid mediated ketene chemistry (MAMKC) is applied to synthesis of poly(ester amide)s in this work. An MA-functionalized phenolic amide compound (MA_PhOH-Am) is synthesized from the reaction between a MA-functionalized amine and 3,4-dihydrocoumarine (DHC, a biomass-based chemical) through amine-lactone addition reaction. Polymerization of MA_PhOH-Am results in the corresponding poly(ester amide) (P(Es-Am)), through MA thermolysis reaction (generating the corresponding ketene groups) and ketene-phenol addition reaction. Both MA_PhOH-Am and P(Es-Am) have been characterized with spectral methods and thermal analysis. P(Es-Am) has an inherent viscosity of 0.49 dL g<sup>−1</sup>, a molecular weight of 76,500 Da, a glass transition temperature of 145°C (tan<i>δ</i> peak in dynamic mechanical analysis), a thermal stability of about 320°C, and a storage modulus at 50°C of 1.0 GPa. In the stress–strain measurement, P(Es-Am) exhibits a Young's modulus, a tensile strength, and an elongation at break of 10.6 ± 0.7 GPa, 165 ± 40 MPa, and 1.83 ± 0.41%, respectively. An effective approach for the synthesis of high-performance poly(ester amide)s has been demonstrated.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 19","pages":"2360-2367"},"PeriodicalIF":2.7020,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1
Abstract
Meldrum's acid mediated ketene chemistry (MAMKC) is applied to synthesis of poly(ester amide)s in this work. An MA-functionalized phenolic amide compound (MA_PhOH-Am) is synthesized from the reaction between a MA-functionalized amine and 3,4-dihydrocoumarine (DHC, a biomass-based chemical) through amine-lactone addition reaction. Polymerization of MA_PhOH-Am results in the corresponding poly(ester amide) (P(Es-Am)), through MA thermolysis reaction (generating the corresponding ketene groups) and ketene-phenol addition reaction. Both MA_PhOH-Am and P(Es-Am) have been characterized with spectral methods and thermal analysis. P(Es-Am) has an inherent viscosity of 0.49 dL g−1, a molecular weight of 76,500 Da, a glass transition temperature of 145°C (tanδ peak in dynamic mechanical analysis), a thermal stability of about 320°C, and a storage modulus at 50°C of 1.0 GPa. In the stress–strain measurement, P(Es-Am) exhibits a Young's modulus, a tensile strength, and an elongation at break of 10.6 ± 0.7 GPa, 165 ± 40 MPa, and 1.83 ± 0.41%, respectively. An effective approach for the synthesis of high-performance poly(ester amide)s has been demonstrated.
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...