Machine Learning for Multiscale Video Coding

IF 1 Q4 OPTICS
M. V. Gashnikov
{"title":"Machine Learning for Multiscale Video Coding","authors":"M. V. Gashnikov","doi":"10.3103/S1060992X23030037","DOIUrl":null,"url":null,"abstract":"<p>The research concerns the use of machine learning algorithms for multiscale coding of digital video sequences. Based on machine learning, the digital image coder is generalized to the coding of video sequences. To this end, we offer an algorithm that allows for videoframes interdependency by using linear regression. The generalized image coder uses multiscale representation of videoframes, neural network three-dimensional interpolation of multiscale videoframe interpretation levels and generative-adversarial neural net replacement of homogeneous portions of a videoframe by synthetic video data. The method of coding the entire video and method of coding videoframes are exemplified by block diagrams. Formalized description of how videoframe correlation is taken into account is given. Real video sequences are used to carry out numerical experiments. The experimental data allow us to make a conclusion about the promise of using the algorithm in video coding and processing.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 3","pages":"189 - 196"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The research concerns the use of machine learning algorithms for multiscale coding of digital video sequences. Based on machine learning, the digital image coder is generalized to the coding of video sequences. To this end, we offer an algorithm that allows for videoframes interdependency by using linear regression. The generalized image coder uses multiscale representation of videoframes, neural network three-dimensional interpolation of multiscale videoframe interpretation levels and generative-adversarial neural net replacement of homogeneous portions of a videoframe by synthetic video data. The method of coding the entire video and method of coding videoframes are exemplified by block diagrams. Formalized description of how videoframe correlation is taken into account is given. Real video sequences are used to carry out numerical experiments. The experimental data allow us to make a conclusion about the promise of using the algorithm in video coding and processing.

Abstract Image

用于多尺度视频编码的机器学习
该研究涉及将机器学习算法用于数字视频序列的多尺度编码。基于机器学习,将数字图像编码器推广到视频序列的编码中。为此,我们提供了一种算法,通过使用线性回归来实现视频帧的相互依赖性。广义图像编码器使用视频帧的多尺度表示、多尺度视频帧解释水平的神经网络三维插值以及合成视频数据对视频帧的同质部分的生成对抗性神经网络替换。通过框图举例说明对整个视频进行编码的方法和对视频帧进行编码的方式。给出了如何考虑视频帧相关性的形式化描述。使用真实的视频序列进行数值实验。实验数据使我们能够对该算法在视频编码和处理中的应用前景做出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信