Algorithm for Data Processing from Ozone Lidar Sensing in the Atmosphere

IF 1 Q4 OPTICS
A. A. Nevzorov, A. V. Nevzorov, A. I. Nadeev, N. G. Zaitsev, Ya. O. Romanovskii
{"title":"Algorithm for Data Processing from Ozone Lidar Sensing in the Atmosphere","authors":"A. A. Nevzorov,&nbsp;A. V. Nevzorov,&nbsp;A. I. Nadeev,&nbsp;N. G. Zaitsev,&nbsp;Ya. O. Romanovskii","doi":"10.3103/S1060992X23030050","DOIUrl":null,"url":null,"abstract":"<p>We developed an algorithm of software product for processing the data from lidar sensing at the wavelengths of 299/341 nm for a vertical path of atmospheric sensing with the spatial resolution from 1.5 to 150 m. The main options of the software include: recording the atmospheric lidar sensing data, conversion of DAT to TXT file format, and retrieval of ozone concentration profiles. The software complex, developed on the basis of our algorithm to process the lidar sensing data, makes it possible to obtain the ozone concentration profiles from 4 to 20 km. The blocks of recording the data from atmospheric lidar sensing and retrieving the ozone concentration profiles allow for a visual control of the recorded lidar returns and retrieved ozone concentration profiles. We present an example of retrieving the ozone concentration profile from lidar data, which was obtained in 2022.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 3","pages":"169 - 181"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23030050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We developed an algorithm of software product for processing the data from lidar sensing at the wavelengths of 299/341 nm for a vertical path of atmospheric sensing with the spatial resolution from 1.5 to 150 m. The main options of the software include: recording the atmospheric lidar sensing data, conversion of DAT to TXT file format, and retrieval of ozone concentration profiles. The software complex, developed on the basis of our algorithm to process the lidar sensing data, makes it possible to obtain the ozone concentration profiles from 4 to 20 km. The blocks of recording the data from atmospheric lidar sensing and retrieving the ozone concentration profiles allow for a visual control of the recorded lidar returns and retrieved ozone concentration profiles. We present an example of retrieving the ozone concentration profile from lidar data, which was obtained in 2022.

Abstract Image

大气臭氧激光雷达遥感数据处理算法
我们开发了一种软件产品的算法,用于处理波长为299/341nm的激光雷达传感数据,用于空间分辨率为1.5至150m的垂直大气传感路径。该软件的主要选项包括:记录大气激光雷达传感数据,将DAT转换为TXT文件格式,以及检索臭氧浓度剖面。该软件复合体是在我们处理激光雷达传感数据的算法的基础上开发的,可以获得4至20公里的臭氧浓度剖面。记录大气激光雷达传感的数据和检索臭氧浓度剖面的块允许对记录的激光雷达返回和检索的臭氧浓度轮廓进行视觉控制。我们展示了一个从2022年获得的激光雷达数据中检索臭氧浓度剖面的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信