{"title":"Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis.","authors":"Xian-Hong Ge, Zai-Yun Li","doi":"10.1007/s10577-007-1168-4","DOIUrl":null,"url":null,"abstract":"<p><p>Intragenomic chromosome homology in the B genome of Brassica nigra and their homoeology with the chromosomes of the A-genome of B. rapa and C-genome of B. oleracea was investigated in triploids (ABC, n = 27) of different origins obtained following hybridizations between natural B. napus (AACC, 2n = 38) x B. nigra (BB, 2n = 16) [AC.B], synthetic B. napus x B. nigra [A.C.B] and B. carinata (BBCC, 2n = 34) x B. rapa (AA, 2n = 20) [BC.A]. A relatively high percentage of pollen mother cells (PMCs) with at least one B-genome chromosome paired allosyndetically with A/C chromosomes was evident in all three combinations. A maximum of three B-genome chromosomes undergoing allosyndesis per cell was observed in AC.B and A.C.B combinations. A maximum of two autosyndetic bivalents within the B genome appeared at diakinesis in all combinations. The accurate analyses of auto- and allo-syndetic pairing for B genome in trigenomic combinations provided further evidence for the hypothesis that the three basic diploid genomes of the cultivated Brassica species evolved from one common ancestral genome with a lower chromosome number. The results showed that Brassica diploids may not be ancient polyploids but may have undergone chromosomal duplications instead of whole-genome duplication. The relevance of these results along with genetic changes of progenitor genomes which occurred during the evolution of Brassica polyploids is discussed.</p>","PeriodicalId":347802,"journal":{"name":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","volume":" ","pages":"849-61"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-007-1168-4","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-007-1168-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2007/10/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
Intragenomic chromosome homology in the B genome of Brassica nigra and their homoeology with the chromosomes of the A-genome of B. rapa and C-genome of B. oleracea was investigated in triploids (ABC, n = 27) of different origins obtained following hybridizations between natural B. napus (AACC, 2n = 38) x B. nigra (BB, 2n = 16) [AC.B], synthetic B. napus x B. nigra [A.C.B] and B. carinata (BBCC, 2n = 34) x B. rapa (AA, 2n = 20) [BC.A]. A relatively high percentage of pollen mother cells (PMCs) with at least one B-genome chromosome paired allosyndetically with A/C chromosomes was evident in all three combinations. A maximum of three B-genome chromosomes undergoing allosyndesis per cell was observed in AC.B and A.C.B combinations. A maximum of two autosyndetic bivalents within the B genome appeared at diakinesis in all combinations. The accurate analyses of auto- and allo-syndetic pairing for B genome in trigenomic combinations provided further evidence for the hypothesis that the three basic diploid genomes of the cultivated Brassica species evolved from one common ancestral genome with a lower chromosome number. The results showed that Brassica diploids may not be ancient polyploids but may have undergone chromosomal duplications instead of whole-genome duplication. The relevance of these results along with genetic changes of progenitor genomes which occurred during the evolution of Brassica polyploids is discussed.