Variability in cardiovascular control: the baroreflex reconsidered.

John M Karemaker, Karel H Wesseling
{"title":"Variability in cardiovascular control: the baroreflex reconsidered.","authors":"John M Karemaker,&nbsp;Karel H Wesseling","doi":"10.1007/s10558-007-9046-4","DOIUrl":null,"url":null,"abstract":"<p><p>Although blood pressure control is often viewed as a paradigmatic example of a \"homeostatic\" biological control system, blood pressure levels can fluctuate considerably over shorter and longer time scales. In modern signal analysis, coherence between heart rate and blood pressure variability is used to estimate baroreflex gain. However, the shorter the measurement period, the more variability this gain factor reveals. We review evidence that this variability is not due to the technique used for the estimation, but may be an intrinsic property of the circulatory control mechanisms. The baroreflex is reviewed from its evolutionary origin, starting in fishes as a reflex mechanism to protect the gills from excessively high pressures by slowing the heart via the (parasympathetic) vagus nerve. Baroreflex inhibition of cardiovascular sympathetic nervous outflow is a later development; the maximally possible extent of sympathetic activity probably being set in the central nervous system by mechanisms other than blood pressure per se. In the sympathetic outflow tract not only baroreflex inhibition but also as yet unidentified, stochastic mechanisms decide to pass or not pass on the sympathetic activity to the periphery. In this short essay, the \"noisiness\" of the baroreflex as nervous control system is stressed. This property is observed in all elements of the reflex, even at the--supposedly--most basic relation between afferent receptor nerve input and efferent--vagus--nerve output signal.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":" ","pages":"23-9"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-007-9046-4","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-007-9046-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Although blood pressure control is often viewed as a paradigmatic example of a "homeostatic" biological control system, blood pressure levels can fluctuate considerably over shorter and longer time scales. In modern signal analysis, coherence between heart rate and blood pressure variability is used to estimate baroreflex gain. However, the shorter the measurement period, the more variability this gain factor reveals. We review evidence that this variability is not due to the technique used for the estimation, but may be an intrinsic property of the circulatory control mechanisms. The baroreflex is reviewed from its evolutionary origin, starting in fishes as a reflex mechanism to protect the gills from excessively high pressures by slowing the heart via the (parasympathetic) vagus nerve. Baroreflex inhibition of cardiovascular sympathetic nervous outflow is a later development; the maximally possible extent of sympathetic activity probably being set in the central nervous system by mechanisms other than blood pressure per se. In the sympathetic outflow tract not only baroreflex inhibition but also as yet unidentified, stochastic mechanisms decide to pass or not pass on the sympathetic activity to the periphery. In this short essay, the "noisiness" of the baroreflex as nervous control system is stressed. This property is observed in all elements of the reflex, even at the--supposedly--most basic relation between afferent receptor nerve input and efferent--vagus--nerve output signal.

心血管控制的变异性:重新考虑气压反射。
虽然血压控制通常被视为“体内平衡”生物控制系统的典型例子,但血压水平在较短和较长的时间尺度上波动很大。在现代信号分析中,心率和血压变异性之间的一致性用于估计压力反射增益。然而,测量周期越短,该增益因子显示的可变性越大。我们审查的证据表明,这种可变性不是由于用于估计的技术,但可能是循环控制机制的内在特性。压力反射从其进化起源开始,在鱼类中作为一种反射机制,通过(副交感)迷走神经减缓心脏的速度,保护鳃免受过高的压力。心血管交感神经流出的压力反射抑制是后来的发展;交感神经活动的最大可能程度可能是由中枢神经系统的机制设定的,而不是血压本身。在交感神经流出道中,除了压力反射抑制外,还有一些未知的随机机制决定交感神经活动是否传递到外周。在这篇短文中,强调了压力反射作为神经控制系统的“噪声”。这种特性在反射的所有元素中都可以观察到,甚至在传入受体神经输入和传出-迷走-神经输出信号之间最基本的关系中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信