Bulgakov Problem for a Hyperbolic Equation and Robust Stability

IF 0.3 Q4 MECHANICS
V. N. Zhermolenko, R. Temoltzi-Ávila
{"title":"Bulgakov Problem for a Hyperbolic Equation and Robust Stability","authors":"V. N. Zhermolenko,&nbsp;R. Temoltzi-Ávila","doi":"10.3103/S0027133021040051","DOIUrl":null,"url":null,"abstract":"<p>An inhomogeneous wave equation with dissipation in the presence of an external uncertain perturbation is considered. The problem of finding solutions with the maximum possible amplitudes is investigated. A method for solving this problem based on the Fourier method of separating variables and the Bulgakov problem of the maximum deviation of solutions of second-order ordinary differential equations with external uncertain perturbations is proposed. The application of the Fourier method is justified. The robust stability property of the considered wave equation is investigated.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"76 4","pages":"95 - 104"},"PeriodicalIF":0.3000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133021040051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

An inhomogeneous wave equation with dissipation in the presence of an external uncertain perturbation is considered. The problem of finding solutions with the maximum possible amplitudes is investigated. A method for solving this problem based on the Fourier method of separating variables and the Bulgakov problem of the maximum deviation of solutions of second-order ordinary differential equations with external uncertain perturbations is proposed. The application of the Fourier method is justified. The robust stability property of the considered wave equation is investigated.

Abstract Image

一类双曲型方程的Bulgakov问题及鲁棒稳定性
考虑了存在外部不确定扰动时具有耗散的非齐次波动方程。研究了求具有最大可能振幅的解的问题。基于分离变量的傅里叶方法和具有外部不确定扰动的二阶常微分方程解的最大偏差的布尔加科夫问题,提出了一种求解该问题的方法。证明了傅里叶方法的应用。研究了所考虑的波动方程的鲁棒稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信