{"title":"Therapeutic potential of novel Na+-Ca2+ exchange inhibitors in attenuating ischemia-reperfusion injury.","authors":"Candace Lee, Naranjan S Dhalla, Larry V Hryshko","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The cardiac Na+-Ca2+ exchanger (NCX) plays an essential role in regulating Ca2+ under physiological and pathophysiological conditions. In its forward mode of operation, which predominates under physiological conditions, it extrudes the Ca2+ that enters the cardiac myocyte on a beat-to-beat basis. During ischemia and reperfusion, increased intracellular Na+ leads to a decrease in Ca2+ efflux and enhanced Ca2+ influx via the NCX, potentially leading to Ca2+ overload, which is one of the major pathophysiological mechanisms for ischemia-reperfusion injury. Novel NCX inhibitors discovered in recent years have shown great promise in attenuating ischemia-reperfusion injury.</p>","PeriodicalId":505916,"journal":{"name":"The Canadian journal of cardiology","volume":" ","pages":"509-16"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian journal of cardiology","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The cardiac Na+-Ca2+ exchanger (NCX) plays an essential role in regulating Ca2+ under physiological and pathophysiological conditions. In its forward mode of operation, which predominates under physiological conditions, it extrudes the Ca2+ that enters the cardiac myocyte on a beat-to-beat basis. During ischemia and reperfusion, increased intracellular Na+ leads to a decrease in Ca2+ efflux and enhanced Ca2+ influx via the NCX, potentially leading to Ca2+ overload, which is one of the major pathophysiological mechanisms for ischemia-reperfusion injury. Novel NCX inhibitors discovered in recent years have shown great promise in attenuating ischemia-reperfusion injury.