{"title":"ABSCISIC ACID SIGNAL TRANSDUCTION.","authors":"Jeffrey Leung, Jerome Giraudat","doi":"10.1146/annurev.arplant.49.1.199","DOIUrl":null,"url":null,"abstract":"<p><p>The plant hormone abscisic acid (ABA) plays a major role in seed maturation and germination, as well as in adaptation to abiotic environmental stresses. ABA promotes stomatal closure by rapidly altering ion fluxes in guard cells. Other ABA actions involve modifications of gene expression, and the analysis of ABA-responsive promoters has revealed a diversity of potential cis-acting regulatory elements. The nature of the ABA receptor(s) remains unknown. In contrast, combined biophysical, genetic, and molecular approaches have led to considerable progress in the characterization of more downstream signaling elements. In particular, substantial evidence points to the importance of reversible protein phosphorylation and modifications of cytosolic calcium levels and pH as intermediates in ABA signal transduction. Exciting advances are being made in reassembling individual components into minimal ABA signaling cascades at the single-cell level.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"49 ","pages":"199-222"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.49.1.199","citationCount":"1201","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.49.1.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1201
Abstract
The plant hormone abscisic acid (ABA) plays a major role in seed maturation and germination, as well as in adaptation to abiotic environmental stresses. ABA promotes stomatal closure by rapidly altering ion fluxes in guard cells. Other ABA actions involve modifications of gene expression, and the analysis of ABA-responsive promoters has revealed a diversity of potential cis-acting regulatory elements. The nature of the ABA receptor(s) remains unknown. In contrast, combined biophysical, genetic, and molecular approaches have led to considerable progress in the characterization of more downstream signaling elements. In particular, substantial evidence points to the importance of reversible protein phosphorylation and modifications of cytosolic calcium levels and pH as intermediates in ABA signal transduction. Exciting advances are being made in reassembling individual components into minimal ABA signaling cascades at the single-cell level.