{"title":"PHOTOSYNTHETIC CYTOCHROMES c IN CYANOBACTERIA, ALGAE, AND PLANTS.","authors":"Cheryl A. Kerfeld, David W. Krogmann","doi":"10.1146/annurev.arplant.49.1.397","DOIUrl":null,"url":null,"abstract":"<p><p>The cytochromes that function in photosynthesis in cyanobacteria, algae, and higher plants have, like the other photosynthetic catalysts, been largely conserved in their structure and function during evolution. Cyanobacteria and algae contain cytochrome c6, which is not found in higher plants and which may enhance survival in their planktonic mode of life. Cyanobacteria and algae contain another cytochrome, low-potential c549, which is not found in higher plants. This cytochrome has a structural role in PSII and may contribute to anaerobic survival. There is a third unique cytochrome, cytochrome M, in the planktonic photosynthesizers, and its function is unknown. New evidence is appearing to indicate evolution of cytochrome interaction mechanisms during the evolution of photosynthesis. The ease of cytochrome gene manipulation in cyanobacteria and in Chlamydomonas reinhardtii now provides great advantages in understanding of photosynthesis. The solution of tertiary and quaternary structures of cytochromes and cytochrome complexes will provide structural and functional detail at atomic resolution.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"49 ","pages":"397-425"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.49.1.397","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.49.1.397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92
Abstract
The cytochromes that function in photosynthesis in cyanobacteria, algae, and higher plants have, like the other photosynthetic catalysts, been largely conserved in their structure and function during evolution. Cyanobacteria and algae contain cytochrome c6, which is not found in higher plants and which may enhance survival in their planktonic mode of life. Cyanobacteria and algae contain another cytochrome, low-potential c549, which is not found in higher plants. This cytochrome has a structural role in PSII and may contribute to anaerobic survival. There is a third unique cytochrome, cytochrome M, in the planktonic photosynthesizers, and its function is unknown. New evidence is appearing to indicate evolution of cytochrome interaction mechanisms during the evolution of photosynthesis. The ease of cytochrome gene manipulation in cyanobacteria and in Chlamydomonas reinhardtii now provides great advantages in understanding of photosynthesis. The solution of tertiary and quaternary structures of cytochromes and cytochrome complexes will provide structural and functional detail at atomic resolution.