{"title":"Anisotropic Scalar Constitutive Equations and Corresponding Models of Viscoplastic Flow","authors":"D. V. Georgievskii","doi":"10.3103/S002713302205003X","DOIUrl":null,"url":null,"abstract":"<p>The tensor linear anisotropic constitutive relations of incompressible viscoplastic flow connecting the stress deviator and strain rates and the following scalar relation connecting the quadratic stress invariant and the hardening function are considered. In the case of a perfect plastic material, the latter relation is an anisotropic Mises–Hencky quadratic criterion of plasticity. The mutual dependence of the fourth-rank tensors involved in tensor and scalar constitutive relations is established. As an illustration, the results are given for an orthotropic material.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"77 5","pages":"143 - 145"},"PeriodicalIF":0.3000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S002713302205003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The tensor linear anisotropic constitutive relations of incompressible viscoplastic flow connecting the stress deviator and strain rates and the following scalar relation connecting the quadratic stress invariant and the hardening function are considered. In the case of a perfect plastic material, the latter relation is an anisotropic Mises–Hencky quadratic criterion of plasticity. The mutual dependence of the fourth-rank tensors involved in tensor and scalar constitutive relations is established. As an illustration, the results are given for an orthotropic material.
期刊介绍:
Moscow University Mechanics Bulletin is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.