Mode-selective ballistic pathway to a metastable electronic phase.

Structural dynamics (Melville, N.Y.) Pub Date : 2022-08-16 eCollection Date: 2022-07-01 DOI:10.1063/4.0000162
Hannes Böckmann, Jan Gerrit Horstmann, Abdus Samad Razzaq, Stefan Wippermann, Claus Ropers
{"title":"Mode-selective ballistic pathway to a metastable electronic phase.","authors":"Hannes Böckmann,&nbsp;Jan Gerrit Horstmann,&nbsp;Abdus Samad Razzaq,&nbsp;Stefan Wippermann,&nbsp;Claus Ropers","doi":"10.1063/4.0000162","DOIUrl":null,"url":null,"abstract":"<p><p>Exploiting vibrational excitation for the dynamic control of material properties is an attractive goal with wide-ranging technological potential. Most metal-to-insulator transitions are mediated by few structural modes and are, thus, ideal candidates for selective driving toward a desired electronic phase. Such targeted navigation within a generally multi-dimensional potential energy landscape requires microscopic insight into the non-equilibrium pathway. However, the exact role of coherent inertial motion across the transition state has remained elusive. Here, we demonstrate mode-selective control over the metal-to-insulator phase transition of atomic indium wires on the Si(111) surface, monitored by ultrafast low-energy electron diffraction. We use tailored pulse sequences to individually enhance or suppress key phonon modes and thereby steer the collective atomic motion within the potential energy surface underlying the structural transformation. <i>Ab initio</i> molecular dynamics simulations demonstrate the ballistic character of the structural transition along the deformation vectors of the Peierls amplitude modes. Our work illustrates that coherent excitation of collective modes via exciton-phonon interactions evades entropic barriers and enables the dynamic control of materials functionality.</p>","PeriodicalId":520783,"journal":{"name":"Structural dynamics (Melville, N.Y.)","volume":" ","pages":"045102"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385219/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural dynamics (Melville, N.Y.)","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exploiting vibrational excitation for the dynamic control of material properties is an attractive goal with wide-ranging technological potential. Most metal-to-insulator transitions are mediated by few structural modes and are, thus, ideal candidates for selective driving toward a desired electronic phase. Such targeted navigation within a generally multi-dimensional potential energy landscape requires microscopic insight into the non-equilibrium pathway. However, the exact role of coherent inertial motion across the transition state has remained elusive. Here, we demonstrate mode-selective control over the metal-to-insulator phase transition of atomic indium wires on the Si(111) surface, monitored by ultrafast low-energy electron diffraction. We use tailored pulse sequences to individually enhance or suppress key phonon modes and thereby steer the collective atomic motion within the potential energy surface underlying the structural transformation. Ab initio molecular dynamics simulations demonstrate the ballistic character of the structural transition along the deformation vectors of the Peierls amplitude modes. Our work illustrates that coherent excitation of collective modes via exciton-phonon interactions evades entropic barriers and enables the dynamic control of materials functionality.

Abstract Image

Abstract Image

Abstract Image

亚稳电子相的模式选择弹道路径。
利用振动激励对材料性能进行动态控制是一个具有广泛技术潜力的诱人目标。大多数金属到绝缘体的转变是由很少的结构模式介导的,因此,是选择性驱动到所需电子相的理想候选者。这种定向导航在一个普遍多维的势能景观需要微观洞察非平衡途径。然而,相干惯性运动在过渡态中的确切作用仍然难以捉摸。在这里,我们展示了模式选择控制原子铟线在Si(111)表面的金属到绝缘体的相变,通过超快低能电子衍射监测。我们使用定制的脉冲序列来单独增强或抑制关键声子模式,从而在结构转换的潜在能量表面内引导集体原子运动。从头算分子动力学模拟证明了沿佩尔斯振幅模式变形向量的结构跃迁的弹道特性。我们的工作表明,通过激子-声子相互作用的集体模式的相干激发避开了熵垒,并使材料功能的动态控制成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信