Detecting the orientation of newly-deposited crystalline cellulose with fluorescent CBM3

Q1 Immunology and Microbiology
Sarah A. Pfaff, Xuan Wang, Edward R. Wagner, Liza A. Wilson, Sarah N. Kiemle, Daniel J. Cosgrove
{"title":"Detecting the orientation of newly-deposited crystalline cellulose with fluorescent CBM3","authors":"Sarah A. Pfaff,&nbsp;Xuan Wang,&nbsp;Edward R. Wagner,&nbsp;Liza A. Wilson,&nbsp;Sarah N. Kiemle,&nbsp;Daniel J. Cosgrove","doi":"10.1016/j.tcsw.2022.100089","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose microfibril patterning influences many of the mechanical attributes of plant cell walls. We developed a simple, fluorescence microscopy-based method to detect the orientation of newly-synthesized cellulose microfibrils in epidermal peels of onion and Arabidopsis. It is based on Alexa Fluor 488-tagged carbohydrate binding module 3a (CBM3a) from <em>Clostridium thermocellum</em> which displayed a nearly 4-fold greater binding to cell walls at pH 5.5 compared with pH 8. Binding to isolated cellulose did not display this pH dependence. At pH 7.5 fibrillar patterns at the surface of the epidermal peels were visible, corresponding to the directionality of surface cellulose microfibrils, as verified by atomic force microscopy. The fibrillar pattern was not visible as the labeling intensity increased at lower pH. The pH of greatest cell wall labeling corresponds to the isoelectric point of CBM3a, suggesting that electrostatic forces limit CBM3a penetration into the wall. Consistent with this, digestion of the wall with pectate lyase to remove homogalacturonan increased labeling intensity. We conclude that electrostatic interactions strongly influence labeling of cell walls with CBM3 and potentially other proteins, holding implications for any work that relies on penetration of protein probes such as CBMs, antibodies, or enzymes into charged polymeric substrates.</p></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"8 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/b7/main.PMC9678952.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233022000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose microfibril patterning influences many of the mechanical attributes of plant cell walls. We developed a simple, fluorescence microscopy-based method to detect the orientation of newly-synthesized cellulose microfibrils in epidermal peels of onion and Arabidopsis. It is based on Alexa Fluor 488-tagged carbohydrate binding module 3a (CBM3a) from Clostridium thermocellum which displayed a nearly 4-fold greater binding to cell walls at pH 5.5 compared with pH 8. Binding to isolated cellulose did not display this pH dependence. At pH 7.5 fibrillar patterns at the surface of the epidermal peels were visible, corresponding to the directionality of surface cellulose microfibrils, as verified by atomic force microscopy. The fibrillar pattern was not visible as the labeling intensity increased at lower pH. The pH of greatest cell wall labeling corresponds to the isoelectric point of CBM3a, suggesting that electrostatic forces limit CBM3a penetration into the wall. Consistent with this, digestion of the wall with pectate lyase to remove homogalacturonan increased labeling intensity. We conclude that electrostatic interactions strongly influence labeling of cell walls with CBM3 and potentially other proteins, holding implications for any work that relies on penetration of protein probes such as CBMs, antibodies, or enzymes into charged polymeric substrates.

Abstract Image

Abstract Image

Abstract Image

用荧光CBM3检测新沉积结晶纤维素的取向
纤维素微纤维的模式影响植物细胞壁的许多机械属性。我们建立了一种基于荧光显微镜的简单方法来检测洋葱和拟南芥表皮中新合成的纤维素微原纤维的取向。它基于Alexa Fluor 488标记的碳水化合物结合模块3a (CBM3a),该模块来自热胞梭菌,在pH 5.5下与细胞壁的结合能力比pH 8高近4倍。与分离纤维素的结合不表现出这种pH依赖性。在pH值为7.5时,可以看到表皮表皮表面的纤维状图案,这与表面纤维素微原纤维的方向性相对应,通过原子力显微镜证实了这一点。在较低的pH下,随着标记强度的增加,纤维状图案不可见。细胞壁标记最大的pH值对应于CBM3a的等电点,表明静电力限制了CBM3a对细胞壁的渗透。与此一致的是,果胶裂解酶对壁的消化去除均半乳糖酸增加了标记强度。我们得出结论,静电相互作用强烈影响CBM3和潜在的其他蛋白质对细胞壁的标记,这对任何依赖于CBMs、抗体或酶等蛋白质探针渗透到带电聚合物底物中的工作都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Surface
Cell Surface Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
6.10
自引率
0.00%
发文量
18
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信