PySOFI: an open source Python package for SOFI.

IF 2.7 Q3 BIOPHYSICS
Biophysical reports Pub Date : 2022-03-30 eCollection Date: 2022-06-08 DOI:10.1016/j.bpr.2022.100052
Yuting Miao, Shimon Weiss, Xiyu Yi
{"title":"<i>PySOFI</i>: an open source Python package for SOFI.","authors":"Yuting Miao,&nbsp;Shimon Weiss,&nbsp;Xiyu Yi","doi":"10.1016/j.bpr.2022.100052","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution without requirement of sophisticated imaging instruments. Easy-to-use open-source packages for SOFI are important to support the utilization and community adoption of the SOFI method, they also encourage the participation and further development of SOFI by new investigators. In this work, we developed <i>PySOFI</i>, an open-source Python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve, and extend the algorithm. We provide complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of <i>PySOFI</i> and illustrate how to use each functional module. A demonstration on how to extend the <i>PySOFI</i> package with additional modules is also included in the <i>PySOFI</i> package. We expect <i>PySOFI</i> to facilitate efficient adoption, testing, modification, dissemination, and prototyping of new SOFI-relevant algorithms.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100052"},"PeriodicalIF":2.7000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680711/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2022.100052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/8 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution without requirement of sophisticated imaging instruments. Easy-to-use open-source packages for SOFI are important to support the utilization and community adoption of the SOFI method, they also encourage the participation and further development of SOFI by new investigators. In this work, we developed PySOFI, an open-source Python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve, and extend the algorithm. We provide complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOFI and illustrate how to use each functional module. A demonstration on how to extend the PySOFI package with additional modules is also included in the PySOFI package. We expect PySOFI to facilitate efficient adoption, testing, modification, dissemination, and prototyping of new SOFI-relevant algorithms.

Abstract Image

Abstract Image

PySOFI:用于SOFI的开源Python包。
超分辨率光学波动成像(SOFI)是一种高度大众化的技术,它不需要复杂的成像仪器就能提供光学超分辨率。易于使用的SOFI开源软件包对于支持SOFI方法的使用和社区采用非常重要,它们也鼓励新的研究者参与和进一步发展SOFI。在这项工作中,我们开发了PySOFI,这是一个用于SOFI分析的开源Python包,它提供了检查、测试、修改、改进和扩展算法的灵活性。我们为这个包提供了完整的文档和一组Jupyter notebook来演示这个包的用法。我们将讨论PySOFI的体系结构,并说明如何使用每个功能模块。关于如何使用附加模块扩展PySOFI包的演示也包含在PySOFI包中。我们期望PySOFI能够促进新的sofi相关算法的有效采用、测试、修改、传播和原型化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信