Tianze Guo, Olivia L Modi, Jillian Hirano, Horacio V Guzman, Tatsuhisa Tsuboi
{"title":"Single-chain models illustrate the 3D RNA folding shape during translation.","authors":"Tianze Guo, Olivia L Modi, Jillian Hirano, Horacio V Guzman, Tatsuhisa Tsuboi","doi":"10.1016/j.bpr.2022.100065","DOIUrl":null,"url":null,"abstract":"<p><p>The three-dimensional conformation of RNA is important in the function and fate of the molecule. The common conformation of mRNA is formed based on the closed-loop structure and internal base pairings with the activity of the ribosome movements. However, recent reports suggest that the closed-loop structure might not be formed in many mRNAs. This implies that mRNA can be considered as a single polymer in the cell. Here, we introduce the Three-dimensional RNA Illustration Program (TRIP) to model the three-dimensional RNA folding shape based on single-chain models and angle restriction of each bead component from previously reported single-molecule fluorescence in situ hybridization (smFISH) experimental data. This simulation method was able to recapitulate the mRNA conformation change of the translation activity and three-dimensional positional interaction between an organelle and its localized mRNAs as end-to-end distances. Within the analyzed cases, base-pairing interactions only have minor effects on the three-dimensional mRNA conformation, and instead single-chain polymer characteristics have a more significant impact on the conformation. This top-down method will be used to interpret the aggregation mechanism of mRNA under different cellular conditions such as nucleolus and phase-separated granules.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b2/e4/main.PMC9680788.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2022.100065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/14 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
The three-dimensional conformation of RNA is important in the function and fate of the molecule. The common conformation of mRNA is formed based on the closed-loop structure and internal base pairings with the activity of the ribosome movements. However, recent reports suggest that the closed-loop structure might not be formed in many mRNAs. This implies that mRNA can be considered as a single polymer in the cell. Here, we introduce the Three-dimensional RNA Illustration Program (TRIP) to model the three-dimensional RNA folding shape based on single-chain models and angle restriction of each bead component from previously reported single-molecule fluorescence in situ hybridization (smFISH) experimental data. This simulation method was able to recapitulate the mRNA conformation change of the translation activity and three-dimensional positional interaction between an organelle and its localized mRNAs as end-to-end distances. Within the analyzed cases, base-pairing interactions only have minor effects on the three-dimensional mRNA conformation, and instead single-chain polymer characteristics have a more significant impact on the conformation. This top-down method will be used to interpret the aggregation mechanism of mRNA under different cellular conditions such as nucleolus and phase-separated granules.