Temporal Network Embedding via Tensor Factorization.

Jing Ma, Qiuchen Zhang, Jian Lou, Li Xiong, Joyce C Ho
{"title":"Temporal Network Embedding via Tensor Factorization.","authors":"Jing Ma, Qiuchen Zhang, Jian Lou, Li Xiong, Joyce C Ho","doi":"10.1145/3459637.3482200","DOIUrl":null,"url":null,"abstract":"<p><p>Representation learning on static graph-structured data has shown a significant impact on many real-world applications. However, less attention has been paid to the evolving nature of temporal networks, in which the edges are often changing over time. The embeddings of such temporal networks should encode both graph-structured information and the temporally evolving pattern. Existing approaches in learning temporally evolving network representations fail to capture the temporal interdependence. In this paper, we propose Toffee, a novel approach for temporal network representation learning based on tensor decomposition. Our method exploits the tensor-tensor product operator to encode the cross-time information, so that the periodic changes in the evolving networks can be captured. Experimental results demonstrate that Toffee outperforms existing methods on multiple real-world temporal networks in generating effective embeddings for the link prediction tasks.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":" ","pages":"3313-3317"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652776/pdf/nihms-1846391.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Representation learning on static graph-structured data has shown a significant impact on many real-world applications. However, less attention has been paid to the evolving nature of temporal networks, in which the edges are often changing over time. The embeddings of such temporal networks should encode both graph-structured information and the temporally evolving pattern. Existing approaches in learning temporally evolving network representations fail to capture the temporal interdependence. In this paper, we propose Toffee, a novel approach for temporal network representation learning based on tensor decomposition. Our method exploits the tensor-tensor product operator to encode the cross-time information, so that the periodic changes in the evolving networks can be captured. Experimental results demonstrate that Toffee outperforms existing methods on multiple real-world temporal networks in generating effective embeddings for the link prediction tasks.

通过张量因式分解实现时态网络嵌入
静态图结构数据的表征学习对许多现实世界的应用产生了重大影响。然而,人们较少关注时态网络的演化性质,因为其中的边往往随着时间的推移而变化。这种时态网络的嵌入应该同时编码图结构信息和时态演变模式。现有的时间演化网络表征学习方法无法捕捉时间上的相互依存性。在本文中,我们提出了基于张量分解的时态网络表征学习新方法 Toffee。我们的方法利用张量-张量乘积算子对跨时间信息进行编码,从而捕捉到演化网络中的周期性变化。实验结果表明,在为链接预测任务生成有效嵌入方面,Toffee 在多个真实世界时态网络上的表现优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信