{"title":"Positive input observer-based controller design for blood glucose regulation for type 1 diabetic patients: A backstepping approach","authors":"Mohamadreza Homayounzade","doi":"10.1049/syb2.12049","DOIUrl":null,"url":null,"abstract":"<p>In practice, there are many physical systems that can have only positive inputs, such as physiological systems. Most conventional control methods cannot ensure that the main system input is positive. A positive input observer-based controller is designed for an intravenous glucose tolerance test model of type 1 diabetes mellitus (T1DM). The backstepping (BS) approach is employed to design the feedback controller for artificial pancreas (AP) systems, based on the Extended Bergman's Minimal Model (EBMM). The EBMM represents the T1DM in terms of the blood glucose concentration (BGC), insulin concentration, and plasma level and the disturbance of insulin during medication due to either meal intake or burning sugar by doing some physical exercise. The insulin concentration and plasma level are estimated using observers, and these estimations are applied as feedback to the controller. The asymptotic stability of the observer-based controller is proved using the Lyapunov theorem. Moreover, it is proved that the system is bounded input-bounded output (BIBO) stable in the presence of uncertainties generated by uncertain parameters and external disturbance. For realistic situations, we consider only the BGC to be available for measurement and additionally inter-and intra-patient variability of system parameters is considered.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/36/21/SYB2-16-157.PMC9469794.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
In practice, there are many physical systems that can have only positive inputs, such as physiological systems. Most conventional control methods cannot ensure that the main system input is positive. A positive input observer-based controller is designed for an intravenous glucose tolerance test model of type 1 diabetes mellitus (T1DM). The backstepping (BS) approach is employed to design the feedback controller for artificial pancreas (AP) systems, based on the Extended Bergman's Minimal Model (EBMM). The EBMM represents the T1DM in terms of the blood glucose concentration (BGC), insulin concentration, and plasma level and the disturbance of insulin during medication due to either meal intake or burning sugar by doing some physical exercise. The insulin concentration and plasma level are estimated using observers, and these estimations are applied as feedback to the controller. The asymptotic stability of the observer-based controller is proved using the Lyapunov theorem. Moreover, it is proved that the system is bounded input-bounded output (BIBO) stable in the presence of uncertainties generated by uncertain parameters and external disturbance. For realistic situations, we consider only the BGC to be available for measurement and additionally inter-and intra-patient variability of system parameters is considered.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.