Yujie Zhao, Changqing Liu, Zhiwei Zhao, Kai Tang, Dong He
{"title":"Reinforcement learning method for machining deformation control based on meta-invariant feature space.","authors":"Yujie Zhao, Changqing Liu, Zhiwei Zhao, Kai Tang, Dong He","doi":"10.1186/s42492-022-00123-2","DOIUrl":null,"url":null,"abstract":"<p><p>Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components. In the machining process, different batches of blanks have different residual stress distributions, which pose a significant challenge to machining deformation control. In this study, a reinforcement learning method for machining deformation control based on a meta-invariant feature space was developed. The proposed method uses a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force. Moreover, combined with a meta-invariant feature space, the proposed method learns the internal relationship of the deformation control approaches under different stress distributions to achieve the machining deformation control of different batches of blanks. Finally, the experimental results show that the proposed method achieves better deformation control than the two existing benchmarking methods.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":" ","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684396/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-022-00123-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1
Abstract
Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components. In the machining process, different batches of blanks have different residual stress distributions, which pose a significant challenge to machining deformation control. In this study, a reinforcement learning method for machining deformation control based on a meta-invariant feature space was developed. The proposed method uses a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force. Moreover, combined with a meta-invariant feature space, the proposed method learns the internal relationship of the deformation control approaches under different stress distributions to achieve the machining deformation control of different batches of blanks. Finally, the experimental results show that the proposed method achieves better deformation control than the two existing benchmarking methods.