Kappa Free Light Chain Biomarkers Are Efficient for the Diagnosis of Multiple Sclerosis: A Large Multicenter Cohort Study.

IF 7.5
Michael Levraut, Sabine Laurent-Chabalier, Xavier Ayrignac, Kévin Bigaut, Manon Rival, Sanae Squalli, Hélène Zéphir, Tifanie Alberto, Jean-David Pekar, Jonathan Ciron, Damien Biotti, Bénédicte Puissant-Lubrano, Jean-Philippe Camdessanché, Yannick Tholance, Olivier Casez, Bertrand Toussaint, Jeanne Marion, Thibault Moreau, Daniela Lakomy, Audrey Thomasset, Elisabeth Maillart, Delphine Sterlin, Aude Maurousset, Auriane Rocher, David Axel Laplaud, Edith Bigot-Corbel, Pierre-Olivier Bertho, Jean Pelletier, Joseph Boucraut, Pierre Labauge, Thierry Vincent, Jérôme De Sèze, Isabelle Jahn, Barbara Seitz-Polski, Eric Thouvenot, Christine Lebrun-Frenay
{"title":"Kappa Free Light Chain Biomarkers Are Efficient for the Diagnosis of Multiple Sclerosis: A Large Multicenter Cohort Study.","authors":"Michael Levraut,&nbsp;Sabine Laurent-Chabalier,&nbsp;Xavier Ayrignac,&nbsp;Kévin Bigaut,&nbsp;Manon Rival,&nbsp;Sanae Squalli,&nbsp;Hélène Zéphir,&nbsp;Tifanie Alberto,&nbsp;Jean-David Pekar,&nbsp;Jonathan Ciron,&nbsp;Damien Biotti,&nbsp;Bénédicte Puissant-Lubrano,&nbsp;Jean-Philippe Camdessanché,&nbsp;Yannick Tholance,&nbsp;Olivier Casez,&nbsp;Bertrand Toussaint,&nbsp;Jeanne Marion,&nbsp;Thibault Moreau,&nbsp;Daniela Lakomy,&nbsp;Audrey Thomasset,&nbsp;Elisabeth Maillart,&nbsp;Delphine Sterlin,&nbsp;Aude Maurousset,&nbsp;Auriane Rocher,&nbsp;David Axel Laplaud,&nbsp;Edith Bigot-Corbel,&nbsp;Pierre-Olivier Bertho,&nbsp;Jean Pelletier,&nbsp;Joseph Boucraut,&nbsp;Pierre Labauge,&nbsp;Thierry Vincent,&nbsp;Jérôme De Sèze,&nbsp;Isabelle Jahn,&nbsp;Barbara Seitz-Polski,&nbsp;Eric Thouvenot,&nbsp;Christine Lebrun-Frenay","doi":"10.1212/NXI.0000000000200049","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Kappa free light chains (KFLC) seem to efficiently diagnose MS. However, extensive cohort studies are lacking to establish consensus cut-offs, notably to rule out non-MS autoimmune CNS disorders. Our objectives were to (1) determine diagnostic performances of CSF KFLC, KFLC index, and KFLC intrathecal fraction (IF) threshold values that allow us to separate MS from different CNS disorder control populations and compare them with oligoclonal bands' (OCB) performances and (2) to identify independent factors associated with KFLC quantification in MS.</p><p><strong>Methods: </strong>We conducted a retrospective multicenter study involving 13 French MS centers. Patients were included if they had a noninfectious and nontumoral CNS disorder, eligible data concerning CSF and serum KFLC, albumin, and OCB. Patients were classified into 4 groups according to their diagnosis: MS, clinically isolated syndrome (CIS), other inflammatory CNS disorders (OIND), and noninflammatory CNS disorder controls (NINDC).</p><p><strong>Results: </strong>One thousand six hundred twenty-one patients were analyzed (675 MS, 90 CIS, 297 OIND, and 559 NINDC). KFLC index and KFLC IF had similar performances in diagnosing MS from nonselected controls and OIND (<i>p</i> = 0.123 and <i>p</i> = 0.991 for area under the curve [AUC] comparisons) and performed better than CSF KFLC (<i>p</i> < 0.001 for all AUC comparisons). A KFLC index of 8.92 best separated MS/CIS from the entire nonselected control population, with better performances than OCB (<i>p</i> < 0.001 for AUC comparison). A KFLC index of 11.56 best separated MS from OIND, with similar performances than OCB (<i>p</i> = 0.065). In the multivariate analysis model, female gender (<i>p</i> = 0.003), young age (<i>p</i> = 0.013), and evidence of disease activity (<i>p</i> < 0.001) were independent factors associated with high KFLC index values in patients with MS, whereas MS phenotype, immune-modifying treatment use at sampling, and the FLC analyzer type did not influence KFLC index.</p><p><strong>Discussion: </strong>KFLC biomarkers are efficient tools to separate patients with MS from controls, even when compared with other patients with CNS autoimmune disorder. Given these results, we suggest using KFLC index or KFLC IF as a criterion to diagnose MS.</p><p><strong>Classification of evidence: </strong>This study provides Class III evidence that KFLC index or IF can be used to differentiate patients with MS from nonselected controls and from patients with other autoimmune CNS disorders.</p>","PeriodicalId":520720,"journal":{"name":"Neurology(R) neuroimmunology & neuroinflammation","volume":" ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/52/ba/NXI-2022-200056.PMC9663206.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology(R) neuroimmunology & neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/NXI.0000000000200049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Background and objectives: Kappa free light chains (KFLC) seem to efficiently diagnose MS. However, extensive cohort studies are lacking to establish consensus cut-offs, notably to rule out non-MS autoimmune CNS disorders. Our objectives were to (1) determine diagnostic performances of CSF KFLC, KFLC index, and KFLC intrathecal fraction (IF) threshold values that allow us to separate MS from different CNS disorder control populations and compare them with oligoclonal bands' (OCB) performances and (2) to identify independent factors associated with KFLC quantification in MS.

Methods: We conducted a retrospective multicenter study involving 13 French MS centers. Patients were included if they had a noninfectious and nontumoral CNS disorder, eligible data concerning CSF and serum KFLC, albumin, and OCB. Patients were classified into 4 groups according to their diagnosis: MS, clinically isolated syndrome (CIS), other inflammatory CNS disorders (OIND), and noninflammatory CNS disorder controls (NINDC).

Results: One thousand six hundred twenty-one patients were analyzed (675 MS, 90 CIS, 297 OIND, and 559 NINDC). KFLC index and KFLC IF had similar performances in diagnosing MS from nonselected controls and OIND (p = 0.123 and p = 0.991 for area under the curve [AUC] comparisons) and performed better than CSF KFLC (p < 0.001 for all AUC comparisons). A KFLC index of 8.92 best separated MS/CIS from the entire nonselected control population, with better performances than OCB (p < 0.001 for AUC comparison). A KFLC index of 11.56 best separated MS from OIND, with similar performances than OCB (p = 0.065). In the multivariate analysis model, female gender (p = 0.003), young age (p = 0.013), and evidence of disease activity (p < 0.001) were independent factors associated with high KFLC index values in patients with MS, whereas MS phenotype, immune-modifying treatment use at sampling, and the FLC analyzer type did not influence KFLC index.

Discussion: KFLC biomarkers are efficient tools to separate patients with MS from controls, even when compared with other patients with CNS autoimmune disorder. Given these results, we suggest using KFLC index or KFLC IF as a criterion to diagnose MS.

Classification of evidence: This study provides Class III evidence that KFLC index or IF can be used to differentiate patients with MS from nonselected controls and from patients with other autoimmune CNS disorders.

Abstract Image

Abstract Image

Abstract Image

Kappa游离轻链生物标志物对多发性硬化症的有效诊断:一项大型多中心队列研究
背景和目的:Kappa游离轻链(KFLC)似乎可以有效诊断ms,然而,缺乏广泛的队列研究来建立共识的截止点,特别是排除非ms自身免疫性中枢神经系统疾病。我们的目标是:(1)确定CSF KFLC、KFLC指数和KFLC鞘内分数(IF)阈值的诊断性能,使我们能够从不同的中枢神经系统疾病对照人群中分离MS,并将其与oligoclonal bands (OCB)性能进行比较;(2)确定MS中与KFLC定量相关的独立因素。方法:我们进行了一项涉及13个法国MS中心的回顾性多中心研究。如果患者患有非感染性和非肿瘤性中枢神经系统疾病,则纳入CSF和血清KFLC,白蛋白和OCB的合格数据。根据诊断结果将患者分为4组:MS、临床孤立综合征(CIS)、其他炎性中枢神经系统疾病(OIND)和非炎性中枢神经系统疾病对照组(NINDC)。结果:共分析了1621例患者(675例MS, 90例CIS, 297例OIND, 559例NINDC)。KFLC指数和KFLC IF在非选择对照和OIND中诊断MS的表现相似(曲线下面积[AUC]比较p = 0.123和p = 0.991),并且优于CSF KFLC(所有AUC比较p < 0.001)。KFLC指数为8.92,能较好地将MS/CIS从整个非选择对照群体中分离出来(AUC比较p < 0.001)。MS与OIND的KFLC指数为11.56,与OCB的分离效果相近(p = 0.065)。在多变量分析模型中,女性(p = 0.003)、年轻(p = 0.013)和疾病活动性证据(p < 0.001)是与MS患者高KFLC指数相关的独立因素,而MS表型、采样时使用的免疫修饰治疗和FLC分析仪类型对KFLC指数没有影响。讨论:KFLC生物标志物是区分MS患者与对照组的有效工具,即使与其他CNS自身免疫性疾病患者相比也是如此。鉴于这些结果,我们建议使用KFLC指数或KFLC IF作为诊断MS的标准。证据分类:本研究提供的III级证据表明,KFLC指数或IF可用于区分MS患者与非选择对照组和其他自身免疫性中枢神经系统疾病患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信