Ultra-confined Propagating Exciton–Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs

IF 4.703 3区 材料科学
Yipei Wang, Aoning Luo, Chunyan Zhu, Zhiyong Li, Xiaoqin Wu
{"title":"Ultra-confined Propagating Exciton–Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs","authors":"Yipei Wang,&nbsp;Aoning Luo,&nbsp;Chunyan Zhu,&nbsp;Zhiyong Li,&nbsp;Xiaoqin Wu","doi":"10.1186/s11671-022-03748-7","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid coupling systems consisting of transition metal dichalcogenides (TMD) and plasmonic nanostructures have emerged as a promising platform to explore exciton–plasmon polaritons. However, the requisite cavity/resonator for strong coupling introduces extra complexities and challenges for waveguiding applications. Alternatively, plasmonic nano-waveguides can also be utilized to provide a non-resonant approach for strong coupling, while their utility is limited by the plasmonic confinement-loss and confinement-momentum trade-offs. Here, based on a cavity-free approach, we overcome these constraints by theoretically strong coupling of a monolayer TMD to a single metal nanowire, generating ultra-confined propagating exciton–plasmon polaritons (PEPPs) that beat the plasmonic trade-offs. By leveraging strong-coupling-induced reformations in energy distribution and combining favorable properties of surface plasmon polaritons (SPPs) and excitons, the generated PEPPs feature ultra-deep subwavelength confinement (down to 1-nm level with mode areas ~ 10<sup>–4</sup> of <i>λ</i><sup>2</sup>), long propagation length (up to ~ 60 µm), tunable dispersion with versatile mode characters (SPP- and exciton-like mode characters), and small momentum mismatch to free-space photons. With the capability to overcome the trade-offs of SPPs and the compatibility for waveguiding applications, our theoretical results suggest an attractive guided-wave platform to manipulate exciton–plasmon interactions at the ultra-deep subwavelength scale, opening new horizons for waveguiding nano-polaritonic components and devices.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"17 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-022-03748-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid coupling systems consisting of transition metal dichalcogenides (TMD) and plasmonic nanostructures have emerged as a promising platform to explore exciton–plasmon polaritons. However, the requisite cavity/resonator for strong coupling introduces extra complexities and challenges for waveguiding applications. Alternatively, plasmonic nano-waveguides can also be utilized to provide a non-resonant approach for strong coupling, while their utility is limited by the plasmonic confinement-loss and confinement-momentum trade-offs. Here, based on a cavity-free approach, we overcome these constraints by theoretically strong coupling of a monolayer TMD to a single metal nanowire, generating ultra-confined propagating exciton–plasmon polaritons (PEPPs) that beat the plasmonic trade-offs. By leveraging strong-coupling-induced reformations in energy distribution and combining favorable properties of surface plasmon polaritons (SPPs) and excitons, the generated PEPPs feature ultra-deep subwavelength confinement (down to 1-nm level with mode areas ~ 10–4 of λ2), long propagation length (up to ~ 60 µm), tunable dispersion with versatile mode characters (SPP- and exciton-like mode characters), and small momentum mismatch to free-space photons. With the capability to overcome the trade-offs of SPPs and the compatibility for waveguiding applications, our theoretical results suggest an attractive guided-wave platform to manipulate exciton–plasmon interactions at the ultra-deep subwavelength scale, opening new horizons for waveguiding nano-polaritonic components and devices.

Abstract Image

Abstract Image

Abstract Image

通过无腔强耦合实现的超约束传播激子-质子极化子:战胜等离子体的权衡取舍
由过渡金属二卤化物(TMD)和等离子纳米结构组成的混合耦合系统已成为探索激子-等离子极化子的一个前景广阔的平台。然而,强耦合所需的空腔/谐振器给波导应用带来了额外的复杂性和挑战。另外,也可以利用质子纳米波导来提供一种非共振的强耦合方法,但其实用性受到质子约束损耗和约束动量权衡的限制。在这里,我们基于无空腔方法,通过理论上将单层 TMD 与单根金属纳米线强耦合,产生了超约束传播的激子-等离子体极化子 (PEPP),从而克服了这些限制。通过利用强耦合诱导的能量分布变化,并结合表面等离子体极化子(SPP)和激子的有利特性,生成的 PEPPs 具有超深亚波长约束(低至 1 纳米级,模式面积约为λ2 的 10-4)、长传播长度(长达约 60 微米)、可调色散和多种模式特性(SPP 和激子类模式特性),以及与自由空间光子的小动量不匹配等特点。凭借克服 SPP 的权衡能力和波导应用的兼容性,我们的理论结果表明这是一个极具吸引力的导波平台,可在超深亚波长尺度上操纵激子-等离子相互作用,为波导纳米极性元件和器件开辟了新天地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信