IRE1-mediated cytoplasmic splicing and regulated IRE1-dependent decay of mRNA in the liverwort Marchantia polymorpha.

IF 1.4 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sho Takeda, Taisuke Togawa, Kei-Ichiro Mishiba, Katsuyuki T Yamato, Yuji Iwata, Nozomu Koizumi
{"title":"IRE1-mediated cytoplasmic splicing and regulated IRE1-dependent decay of mRNA in the liverwort <i>Marchantia polymorpha</i>.","authors":"Sho Takeda,&nbsp;Taisuke Togawa,&nbsp;Kei-Ichiro Mishiba,&nbsp;Katsuyuki T Yamato,&nbsp;Yuji Iwata,&nbsp;Nozomu Koizumi","doi":"10.5511/plantbiotechnology.22.0704a","DOIUrl":null,"url":null,"abstract":"<p><p>The unfolded protein response (UPR) or the endoplasmic reticulum (ER) stress response is a homeostatic cellular response conserved in eukaryotes to alleviate the accumulation of unfolded proteins in the ER. In the present study, we characterized the UPR in the liverwort <i>Marchantia polymorpha</i> to obtain insights into the conservation and divergence of the UPR in the land plants. We demonstrate that the most conserved UPR transducer in eukaryotes, IRE1, is conserved in <i>M. polymorpha</i>, which harbors a single gene encoding IRE1. We showed that MpIRE1 mediates cytoplasmic splicing of mRNA encoding MpbZIP7, a <i>M. polymorpha</i> homolog of bZIP60 in flowering plants, and upregulation of ER chaperone genes in response to the ER stress inducer tunicamycin. We further showed that MpIRE1 also mediates downregulation of genes encoding secretory and membrane proteins in response to ER stress, indicating the conservation of regulated IRE1-dependent decay of mRNA. Consistent with their roles in the UPR, Mp<i>ire1</i> <sup><i>ge</i></sup> and Mp<i>bzip7</i> <sup><i>ge</i></sup> mutants exhibited higher sensitivity to ER stress. Furthermore, an Mp<i>ire1</i> <sup><i>ge</i></sup> mutant also exhibited retarded growth even without ER stress inducers, indicating the importance of MpIRE1 for vegetative growth in addition to alleviation of ER stress. The present study provides insights into the evolution of the UPR in land plants.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592932/pdf/plantbiotechnology-39-3-22.0704a.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.22.0704a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The unfolded protein response (UPR) or the endoplasmic reticulum (ER) stress response is a homeostatic cellular response conserved in eukaryotes to alleviate the accumulation of unfolded proteins in the ER. In the present study, we characterized the UPR in the liverwort Marchantia polymorpha to obtain insights into the conservation and divergence of the UPR in the land plants. We demonstrate that the most conserved UPR transducer in eukaryotes, IRE1, is conserved in M. polymorpha, which harbors a single gene encoding IRE1. We showed that MpIRE1 mediates cytoplasmic splicing of mRNA encoding MpbZIP7, a M. polymorpha homolog of bZIP60 in flowering plants, and upregulation of ER chaperone genes in response to the ER stress inducer tunicamycin. We further showed that MpIRE1 also mediates downregulation of genes encoding secretory and membrane proteins in response to ER stress, indicating the conservation of regulated IRE1-dependent decay of mRNA. Consistent with their roles in the UPR, Mpire1 ge and Mpbzip7 ge mutants exhibited higher sensitivity to ER stress. Furthermore, an Mpire1 ge mutant also exhibited retarded growth even without ER stress inducers, indicating the importance of MpIRE1 for vegetative growth in addition to alleviation of ER stress. The present study provides insights into the evolution of the UPR in land plants.

多形地茅中ire1介导的细胞质剪接和ire1依赖性mRNA衰减的调控
未折叠蛋白反应(UPR)或内质网(ER)应激反应是一种在真核生物中保守的稳态细胞反应,以减轻内质网中未折叠蛋白的积累。在本研究中,我们对多态地茅(Marchantia polymorpha)的UPR进行了表征,以了解UPR在陆地植物中的保存和分化情况。我们证明了真核生物中最保守的UPR换能器IRE1在M. polymorpha中是保守的,其中包含一个编码IRE1的基因。我们发现MpIRE1在开花植物中介导编码MpbZIP7的mRNA的细胞质剪接,以及响应内质网胁迫诱导剂tunicamycin时内质网伴侣基因的上调。MpbZIP7是bZIP60的多态M.同源物。我们进一步发现,在内质网应激下,MpIRE1还介导编码分泌蛋白和膜蛋白的基因下调,这表明受调控的ire1依赖性mRNA衰变是守恒的。与它们在UPR中的作用一致,mppire1ge和mpbzip7ge突变体对内质网应激表现出更高的敏感性。此外,即使没有内质网胁迫诱导剂,Mpire1突变体也表现出生长迟缓,这表明除了缓解内质网胁迫外,Mpire1对营养生长也很重要。本研究为陆地植物UPR的进化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology
Plant Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-PLANT SCIENCES
CiteScore
2.90
自引率
18.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信