Integration of allocentric and egocentric visual information in a convolutional/multilayer perceptron network model of goal-directed gaze shifts.

Cerebral cortex communications Pub Date : 2022-07-08 eCollection Date: 2022-01-01 DOI:10.1093/texcom/tgac026
Parisa Abedi Khoozani, Vishal Bharmauria, Adrian Schütz, Richard P Wildes, J Douglas Crawford
{"title":"Integration of allocentric and egocentric visual information in a convolutional/multilayer perceptron network model of goal-directed gaze shifts.","authors":"Parisa Abedi Khoozani,&nbsp;Vishal Bharmauria,&nbsp;Adrian Schütz,&nbsp;Richard P Wildes,&nbsp;J Douglas Crawford","doi":"10.1093/texcom/tgac026","DOIUrl":null,"url":null,"abstract":"<p><p>Allocentric (landmark-centered) and egocentric (eye-centered) visual codes are fundamental for spatial cognition, navigation, and goal-directed movement. Neuroimaging and neurophysiology suggest these codes are initially segregated, but then reintegrated in frontal cortex for movement control. We created and validated a theoretical framework for this process using physiologically constrained inputs and outputs. To implement a general framework, we integrated a convolutional neural network (CNN) of the visual system with a multilayer perceptron (MLP) model of the sensorimotor transformation. The network was trained on a task where a landmark shifted relative to the saccade target. These visual parameters were input to the CNN, the CNN output and initial gaze position to the MLP, and a decoder transformed MLP output into saccade vectors. Decoded saccade output replicated idealized training sets with various allocentric weightings and actual monkey data where the landmark shift had a partial influence (<i>R</i> <sup>2</sup> = 0.8). Furthermore, MLP output units accurately simulated prefrontal response field shifts recorded from monkeys during the same paradigm. In summary, our model replicated both the general properties of the visuomotor transformations for gaze and specific experimental results obtained during allocentric-egocentric integration, suggesting it can provide a general framework for understanding these and other complex visuomotor behaviors.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334293/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgac026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Allocentric (landmark-centered) and egocentric (eye-centered) visual codes are fundamental for spatial cognition, navigation, and goal-directed movement. Neuroimaging and neurophysiology suggest these codes are initially segregated, but then reintegrated in frontal cortex for movement control. We created and validated a theoretical framework for this process using physiologically constrained inputs and outputs. To implement a general framework, we integrated a convolutional neural network (CNN) of the visual system with a multilayer perceptron (MLP) model of the sensorimotor transformation. The network was trained on a task where a landmark shifted relative to the saccade target. These visual parameters were input to the CNN, the CNN output and initial gaze position to the MLP, and a decoder transformed MLP output into saccade vectors. Decoded saccade output replicated idealized training sets with various allocentric weightings and actual monkey data where the landmark shift had a partial influence (R 2 = 0.8). Furthermore, MLP output units accurately simulated prefrontal response field shifts recorded from monkeys during the same paradigm. In summary, our model replicated both the general properties of the visuomotor transformations for gaze and specific experimental results obtained during allocentric-egocentric integration, suggesting it can provide a general framework for understanding these and other complex visuomotor behaviors.

Abstract Image

Abstract Image

Abstract Image

基于卷积/多层感知器网络模型的非中心和自我中心视觉信息整合。
异中心(以地标为中心)和自我中心(以眼睛为中心)的视觉编码是空间认知、导航和目标导向运动的基础。神经影像学和神经生理学表明,这些密码最初是分开的,但后来在额叶皮层重新整合,以控制运动。我们使用生理上受限的输入和输出为这一过程创建并验证了一个理论框架。为了实现一个通用框架,我们将视觉系统的卷积神经网络(CNN)与感觉运动转换的多层感知器(MLP)模型集成在一起。该网络是在一个相对于扫视目标的地标移动的任务上训练的。这些视觉参数被输入到CNN中,CNN输出和初始凝视位置被输入到MLP中,一个解码器将MLP输出转换成扫视向量。解码后的眼跳输出复制了具有各种非中心权重的理想训练集和实际猴子数据,其中地标位移具有部分影响(r2 = 0.8)。此外,MLP输出单元准确地模拟了在相同范式下从猴子记录的前额叶反应场变化。总之,我们的模型复制了注视的视觉运动转换的一般特性和在异心-自我中心整合过程中获得的特定实验结果,表明它可以为理解这些和其他复杂的视觉运动行为提供一个总体框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信