Deepankar Sri Gyan, Danny Mannix, Dina Carbone, James L Sumpter, Stephan Geprägs, Maxim Dietlein, Rudolf Gross, Andrius Jurgilaitis, Van-Thai Pham, Hélène Coudert-Alteirac, Jörgen Larsson, Daniel Haskel, Jörg Strempfer, Paul G Evans
{"title":"Low-temperature nanoscale heat transport in a gadolinium iron garnet heterostructure probed by ultrafast x-ray diffraction.","authors":"Deepankar Sri Gyan, Danny Mannix, Dina Carbone, James L Sumpter, Stephan Geprägs, Maxim Dietlein, Rudolf Gross, Andrius Jurgilaitis, Van-Thai Pham, Hélène Coudert-Alteirac, Jörgen Larsson, Daniel Haskel, Jörg Strempfer, Paul G Evans","doi":"10.1063/4.0000154","DOIUrl":null,"url":null,"abstract":"<p><p>Time-resolved x-ray diffraction has been used to measure the low-temperature thermal transport properties of a Pt/Gd<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>//Gd<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> metal/oxide heterostructure relevant to applications in spin caloritronics. A pulsed femtosecond optical signal produces a rapid temperature rise in the Pt layer, followed by heat transport into the Gd<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub> (GdIG) thin film and the Gd<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> (GGG) substrate. The time dependence of x-ray diffraction from the GdIG layer was tracked using an accelerator-based femtosecond x-ray source. The ultrafast diffraction measurements probed the intensity of the GdIG (1 -1 2) x-ray reflection in a grazing-incidence x-ray diffraction geometry. The comparison of the variation of the diffracted x-ray intensity with a model including heat transport and the temperature dependence of the GdIG lattice parameter allows the thermal conductance of the Pt/GdIG and GdIG//GGG interfaces to be determined. Complementary synchrotron x-ray diffraction studies of the low-temperature thermal expansion properties of the GdIG layer provide a precise calibration of the temperature dependence of the GdIG lattice parameter. The interfacial thermal conductance of the Pt/GdIG and GdIG//GGG interfaces determined from the time-resolved diffraction study is of the same order of magnitude as previous reports for metal/oxide and epitaxial dielectric interfaces. The thermal parameters of the Pt/GdIG//GGG heterostructure will aid in the design and implementation of thermal transport devices and nanostructures.</p>","PeriodicalId":520783,"journal":{"name":"Structural dynamics (Melville, N.Y.)","volume":" ","pages":"045101"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural dynamics (Melville, N.Y.)","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Time-resolved x-ray diffraction has been used to measure the low-temperature thermal transport properties of a Pt/Gd3Fe5O12//Gd3Ga5O12 metal/oxide heterostructure relevant to applications in spin caloritronics. A pulsed femtosecond optical signal produces a rapid temperature rise in the Pt layer, followed by heat transport into the Gd3Fe5O12 (GdIG) thin film and the Gd3Ga5O12 (GGG) substrate. The time dependence of x-ray diffraction from the GdIG layer was tracked using an accelerator-based femtosecond x-ray source. The ultrafast diffraction measurements probed the intensity of the GdIG (1 -1 2) x-ray reflection in a grazing-incidence x-ray diffraction geometry. The comparison of the variation of the diffracted x-ray intensity with a model including heat transport and the temperature dependence of the GdIG lattice parameter allows the thermal conductance of the Pt/GdIG and GdIG//GGG interfaces to be determined. Complementary synchrotron x-ray diffraction studies of the low-temperature thermal expansion properties of the GdIG layer provide a precise calibration of the temperature dependence of the GdIG lattice parameter. The interfacial thermal conductance of the Pt/GdIG and GdIG//GGG interfaces determined from the time-resolved diffraction study is of the same order of magnitude as previous reports for metal/oxide and epitaxial dielectric interfaces. The thermal parameters of the Pt/GdIG//GGG heterostructure will aid in the design and implementation of thermal transport devices and nanostructures.