{"title":"Neurogenesis of the scallop Azumapecten farreri: from the first larval sensory neurons to the definitive nervous system of juveniles.","authors":"Marina Kniazkina, Vyacheslav Dyachuk","doi":"10.1186/s12983-022-00468-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Scallops are among the best-studied bivalve mollusks. However, adult nervous system and neurogenesis studies of scallops are limited. Here, we studied the localization of neurotransmitters (serotonin/5-HT, FMRFamide, catecholamines) in adult ganglia and larvae of Azumapecten farreri using histochemical and immunohistochemical methods.</p><p><strong>Results: </strong>We found peptide FMRFamide in all adult scallop ganglia, whereas 5-HT-like immunoreactive (lir) somata were exclusively detected in the cerebropleural, pedal, and accessory ganglia. Scallop larval neurogenesis starts with the emergence of the 5-HT-lir neurons, which are part of the apical organ (AO) at the early veliger stage. Near the AO, paired anlagen of cerebral ganglion (CG) developed. 5-HT-lir neurites of the CG innervate the velum, ventral, and dorsal parts of the larva at the late veliger stage. Scallop pediveligers possess 5-HT-lir CG, pleural ganglia, and immunopositive signals in the developing enteric nervous system. FMRFamide-lir is first detected in dorsal, ventral, and AO cells of early veligers. Later, FMRFamide-lir extends to the visceral nervous cord, all ganglia, as well as in the enteric nervous system in pediveligers. Catecholaminergic neurons are detected near the larval mouth, in the vellum, and in the stomach in veligers.</p><p><strong>Conclusions: </strong>We described the distribution of neurotransmitters of the ganglia in adult scallops and the larval neurodevelopment in A. farreri. Immunostaining of neurotransmitters showed that the gross anatomy of adult scallop ganglia, in general, is similar to that in other bivalves, but complicated by the complexity of the structure of the ganglia and the appearance of additional ganglia not described in other molluscs. A comparison of larval neuromorphology suggests that 5-HT-lir structures are more conservative than FMRF-lir structures in Bivalvia. Notably, the latter are much more distributed in scallop A. farreri larvae than in other studied bivalves.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347173/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-022-00468-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Scallops are among the best-studied bivalve mollusks. However, adult nervous system and neurogenesis studies of scallops are limited. Here, we studied the localization of neurotransmitters (serotonin/5-HT, FMRFamide, catecholamines) in adult ganglia and larvae of Azumapecten farreri using histochemical and immunohistochemical methods.
Results: We found peptide FMRFamide in all adult scallop ganglia, whereas 5-HT-like immunoreactive (lir) somata were exclusively detected in the cerebropleural, pedal, and accessory ganglia. Scallop larval neurogenesis starts with the emergence of the 5-HT-lir neurons, which are part of the apical organ (AO) at the early veliger stage. Near the AO, paired anlagen of cerebral ganglion (CG) developed. 5-HT-lir neurites of the CG innervate the velum, ventral, and dorsal parts of the larva at the late veliger stage. Scallop pediveligers possess 5-HT-lir CG, pleural ganglia, and immunopositive signals in the developing enteric nervous system. FMRFamide-lir is first detected in dorsal, ventral, and AO cells of early veligers. Later, FMRFamide-lir extends to the visceral nervous cord, all ganglia, as well as in the enteric nervous system in pediveligers. Catecholaminergic neurons are detected near the larval mouth, in the vellum, and in the stomach in veligers.
Conclusions: We described the distribution of neurotransmitters of the ganglia in adult scallops and the larval neurodevelopment in A. farreri. Immunostaining of neurotransmitters showed that the gross anatomy of adult scallop ganglia, in general, is similar to that in other bivalves, but complicated by the complexity of the structure of the ganglia and the appearance of additional ganglia not described in other molluscs. A comparison of larval neuromorphology suggests that 5-HT-lir structures are more conservative than FMRF-lir structures in Bivalvia. Notably, the latter are much more distributed in scallop A. farreri larvae than in other studied bivalves.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.