Red blood cell dynamics in extravascular biological tissues modelled as canonical disordered porous media.

IF 3.6 3区 生物学 Q1 BIOLOGY
Interface Focus Pub Date : 2022-10-14 eCollection Date: 2022-12-06 DOI:10.1098/rsfs.2022.0037
Qi Zhou, Kerstin Schirrmann, Eleanor Doman, Qi Chen, Naval Singh, P Ravi Selvaganapathy, Miguel O Bernabeu, Oliver E Jensen, Anne Juel, Igor L Chernyavsky, Timm Krüger
{"title":"Red blood cell dynamics in extravascular biological tissues modelled as canonical disordered porous media.","authors":"Qi Zhou, Kerstin Schirrmann, Eleanor Doman, Qi Chen, Naval Singh, P Ravi Selvaganapathy, Miguel O Bernabeu, Oliver E Jensen, Anne Juel, Igor L Chernyavsky, Timm Krüger","doi":"10.1098/rsfs.2022.0037","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamics of blood flow in the smallest vessels and passages of the human body, where the cellular character of blood becomes prominent, plays a dominant role in the transport and exchange of solutes. Recent studies have revealed that the microhaemodynamics of a vascular network is underpinned by its interconnected structure, and certain structural alterations such as capillary dilation and blockage can substantially change blood flow patterns. However, for extravascular media with disordered microstructure (e.g. the porous intervillous space in the placenta), it remains unclear how the medium's structure affects the haemodynamics. Here, we simulate cellular blood flow in simple models of canonical porous media representative of extravascular biological tissue, with corroborative microfluidic experiments performed for validation purposes. For the media considered here, we observe three main effects: first, the relative apparent viscosity of blood increases with the structural disorder of the medium; second, the presence of red blood cells (RBCs) dynamically alters the flow distribution in the medium; third, symmetry breaking introduced by moderate structural disorder can promote more homogeneous distribution of RBCs. Our findings contribute to a better understanding of the cell-scale haemodynamics that mediates the relationship linking the function of certain biological tissues to their microstructure.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2022.0037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of blood flow in the smallest vessels and passages of the human body, where the cellular character of blood becomes prominent, plays a dominant role in the transport and exchange of solutes. Recent studies have revealed that the microhaemodynamics of a vascular network is underpinned by its interconnected structure, and certain structural alterations such as capillary dilation and blockage can substantially change blood flow patterns. However, for extravascular media with disordered microstructure (e.g. the porous intervillous space in the placenta), it remains unclear how the medium's structure affects the haemodynamics. Here, we simulate cellular blood flow in simple models of canonical porous media representative of extravascular biological tissue, with corroborative microfluidic experiments performed for validation purposes. For the media considered here, we observe three main effects: first, the relative apparent viscosity of blood increases with the structural disorder of the medium; second, the presence of red blood cells (RBCs) dynamically alters the flow distribution in the medium; third, symmetry breaking introduced by moderate structural disorder can promote more homogeneous distribution of RBCs. Our findings contribute to a better understanding of the cell-scale haemodynamics that mediates the relationship linking the function of certain biological tissues to their microstructure.

Abstract Image

Abstract Image

Abstract Image

以典型无序多孔介质为模型的血管外生物组织中的红细胞动力学。
人体最小血管和通道中的血流动力学在溶质的运输和交换中起着主导作用。最近的研究表明,血管网络的微血流动力学是由其相互连接的结构支撑的,某些结构的改变,如毛细血管的扩张和堵塞,会大大改变血流模式。然而,对于微观结构紊乱的血管外介质(如胎盘中多孔的绒毛间隙),介质结构如何影响血流动力学仍不清楚。在此,我们模拟了代表血管外生物组织的典型多孔介质简单模型中的细胞血流,并进行了微流控实验进行验证。对于本文所考虑的介质,我们观察到三种主要效应:第一,血液的相对表观粘度随介质的结构紊乱而增加;第二,红细胞(RBC)的存在动态地改变了介质中的流动分布;第三,适度结构紊乱带来的对称性破坏可促进红细胞的更均匀分布。我们的发现有助于更好地理解细胞尺度的血液动力学,这种动力学介导了某些生物组织的功能与其微观结构之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信