The effect of vitamin E supplementation on brain tissue element levels in epileptic rats.

IF 0.8 4区 医学 Q4 NEUROSCIENCES
L Ozturk-Sonmez, E Tutkun, E Agar, M Ayyildiz, R Mogulkoc, A K Baltaci
{"title":"The effect of vitamin E supplementation on brain tissue element levels in epileptic rats.","authors":"L Ozturk-Sonmez,&nbsp;E Tutkun,&nbsp;E Agar,&nbsp;M Ayyildiz,&nbsp;R Mogulkoc,&nbsp;A K Baltaci","doi":"10.12871/000398292022124","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to investigate how the application of vitamin E affected the levels of chemical elements in the brain tissues of epilepsy-induced rats. The sample of 40 adult male rats was separated into 4 equal groups: Group 1: control, Group 2: vitamin E; Group 3: penicillin to promote epileptic form activity and Group 4: penicillin + vitamin E. After three months of treatment, an Atomic Absorption Spectrophotometer was used to analyze the presence of the elements in brain tissue sections (brain, brainstem, cerebellum) of the decapitated animals. The levels of magnesium in the groups that received vitamin E (G2 and 4) were significantly higher than in the control group (G1) and the first epilepsy group (G3) (p.05).Chrome and zinc levels in brain, brainstem, and cerebellum tissue of the two epilepsy groups (G3-4) decreased significantly compared to the control group (G1) and the vitamin E group (G2) (p.05). The levels of copper in the brainstem and lead in the cerebellum of the first epilepsy group (G3) were higher than in all other groups (p.05). The findings showed that the application of vitamin E in experimental epilepsy may have a limited effect on element metabolism in brain tissue. A decline in zinc levels in the brain, brainstem and cerebellum tissues in epilepsy groups constitutes another result of our study. This should be examined further to determine whether decreased levels of zinc play a role in epilepsy pathogenesis.</p>","PeriodicalId":55476,"journal":{"name":"Archives Italiennes De Biologie","volume":"160 1-2","pages":"42-53"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives Italiennes De Biologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12871/000398292022124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to investigate how the application of vitamin E affected the levels of chemical elements in the brain tissues of epilepsy-induced rats. The sample of 40 adult male rats was separated into 4 equal groups: Group 1: control, Group 2: vitamin E; Group 3: penicillin to promote epileptic form activity and Group 4: penicillin + vitamin E. After three months of treatment, an Atomic Absorption Spectrophotometer was used to analyze the presence of the elements in brain tissue sections (brain, brainstem, cerebellum) of the decapitated animals. The levels of magnesium in the groups that received vitamin E (G2 and 4) were significantly higher than in the control group (G1) and the first epilepsy group (G3) (p.05).Chrome and zinc levels in brain, brainstem, and cerebellum tissue of the two epilepsy groups (G3-4) decreased significantly compared to the control group (G1) and the vitamin E group (G2) (p.05). The levels of copper in the brainstem and lead in the cerebellum of the first epilepsy group (G3) were higher than in all other groups (p.05). The findings showed that the application of vitamin E in experimental epilepsy may have a limited effect on element metabolism in brain tissue. A decline in zinc levels in the brain, brainstem and cerebellum tissues in epilepsy groups constitutes another result of our study. This should be examined further to determine whether decreased levels of zinc play a role in epilepsy pathogenesis.

补充维生素E对癫痫大鼠脑组织元素水平的影响。
本研究的目的是研究维生素E的应用如何影响癫痫诱导大鼠脑组织中化学元素的水平。选取40只成年雄性大鼠,随机分为4组:1组:对照组,2组:维生素E组;第3组:青霉素促进癫痫形态活性,第4组:青霉素+维生素e。治疗3个月后,用原子吸收分光光度仪分析被斩首动物脑组织切片(脑、脑干、小脑)中元素的存在。维生素E组(G2和4)镁水平显著高于对照组(G1)和首发癫痫组(G3) (p. 0.05)。与对照组(G1)和维生素E组(G2)相比,两组癫痫患者(G3-4)脑、脑干和小脑组织中铬和锌水平显著降低(p. 0.05)。首发癫痫组(G3)脑干铜和小脑铅水平均高于其他各组(p < 0.05)。研究结果表明,在实验性癫痫中应用维生素E对脑组织元素代谢的影响可能有限。癫痫组大脑、脑干和小脑组织中锌含量的下降是我们研究的另一个结果。这应该进一步检查,以确定锌水平降低是否在癫痫发病机制中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives Italiennes De Biologie
Archives Italiennes De Biologie 医学-神经科学
CiteScore
2.10
自引率
30.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Archives Italiennes de Biologie - a Journal of Neuroscience- was founded in 1882 and represents one of the oldest neuroscience journals in the world. Archives publishes original contributions in all the fields of neuroscience, including neurophysiology, experimental neuroanatomy and electron microscopy, neurobiology, neurochemistry, molecular biology, genetics, functional brain imaging and behavioral science. Archives Italiennes de Biologie also publishes monographic special issues that collect papers on a specific topic of interest in neuroscience as well as the proceedings of important scientific events. Archives Italiennes de Biologie is published in 4 issues per year and is indexed in the major collections of biomedical journals, including Medline, PubMed, Current Contents, Excerpta Medica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信