Chaoxiang Chen, I. Kurnosov, Guangdi Ma, Yang Weichen, S. Ablameyko
{"title":"Masked Face Recognition Using Generative Adversarial Networks by Restoring the Face Closed Part","authors":"Chaoxiang Chen, I. Kurnosov, Guangdi Ma, Yang Weichen, S. Ablameyko","doi":"10.3103/S1060992X23010022","DOIUrl":null,"url":null,"abstract":"<p>In recent years, many authors intensively develop systems allowing one to identify a person when something (a mask) covers a large part of his face. Most of the existing approaches use different forms of analysis of the visible facial features and apply the obtained results to solve the problem. In this article, we propose a fundamentally new approach based on the image segmentation to erase the mask from the face. After erasing the mask, we restore the image of the face under the mask and take an advantage of the existing face recognition methods. To reconstruct the covered part of the face we use the generative adversarial networks. We show that with the aid of the proposed approach it is possible to improve the quality of recognition of masked faces. We compare the effectiveness of our approach and the algorithm based on the MobileNetV2 and show that our method improves the recognition accuracy. We give some examples and appropriate recommendations.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 1","pages":"1 - 13"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23010022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, many authors intensively develop systems allowing one to identify a person when something (a mask) covers a large part of his face. Most of the existing approaches use different forms of analysis of the visible facial features and apply the obtained results to solve the problem. In this article, we propose a fundamentally new approach based on the image segmentation to erase the mask from the face. After erasing the mask, we restore the image of the face under the mask and take an advantage of the existing face recognition methods. To reconstruct the covered part of the face we use the generative adversarial networks. We show that with the aid of the proposed approach it is possible to improve the quality of recognition of masked faces. We compare the effectiveness of our approach and the algorithm based on the MobileNetV2 and show that our method improves the recognition accuracy. We give some examples and appropriate recommendations.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.