Reproducibility in Human-Robot Interaction: Furthering the Science of HRI.

Current robotics reports Pub Date : 2022-01-01 Epub Date: 2022-10-22 DOI:10.1007/s43154-022-00094-5
Hatice Gunes, Frank Broz, Chris S Crawford, Astrid Rosenthal-von der Pütten, Megan Strait, Laurel Riek
{"title":"Reproducibility in Human-Robot Interaction: Furthering the Science of HRI.","authors":"Hatice Gunes,&nbsp;Frank Broz,&nbsp;Chris S Crawford,&nbsp;Astrid Rosenthal-von der Pütten,&nbsp;Megan Strait,&nbsp;Laurel Riek","doi":"10.1007/s43154-022-00094-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>To discuss the current state of reproducibility of research in human-robot interaction (HRI), challenges specific to the field, and recommendations for how the community can support reproducibility.</p><p><strong>Recent findings: </strong>As in related fields such as artificial intelligence, robotics, and psychology, improving research reproducibility is key to the maturation of the body of scientific knowledge in the field of HRI. The ACM/IEEE International Conference on Human-Robot Interaction introduced a theme on Reproducibility of HRI to their technical program in 2020 to solicit papers presenting reproductions of prior research or artifacts supporting research reproducibility.</p><p><strong>Summary: </strong>This review provides an introduction to the topic of research reproducibility for HRI and describes the state of the art in relation to the HRI 2020 Reproducibility theme. As a highly interdisciplinary field that involves work with technological artifacts, there are unique challenges to reproducibility in HRI. Biases in research evaluation and practice contribute to challenges in supporting reproducibility, and the training of researchers could be changed to encourage research reproduction. The authors propose a number of solutions for addressing these challenges that can serve as guidelines for the HRI community and related fields.</p>","PeriodicalId":93426,"journal":{"name":"Current robotics reports","volume":"3 4","pages":"281-292"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589714/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current robotics reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43154-022-00094-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Purpose of review: To discuss the current state of reproducibility of research in human-robot interaction (HRI), challenges specific to the field, and recommendations for how the community can support reproducibility.

Recent findings: As in related fields such as artificial intelligence, robotics, and psychology, improving research reproducibility is key to the maturation of the body of scientific knowledge in the field of HRI. The ACM/IEEE International Conference on Human-Robot Interaction introduced a theme on Reproducibility of HRI to their technical program in 2020 to solicit papers presenting reproductions of prior research or artifacts supporting research reproducibility.

Summary: This review provides an introduction to the topic of research reproducibility for HRI and describes the state of the art in relation to the HRI 2020 Reproducibility theme. As a highly interdisciplinary field that involves work with technological artifacts, there are unique challenges to reproducibility in HRI. Biases in research evaluation and practice contribute to challenges in supporting reproducibility, and the training of researchers could be changed to encourage research reproduction. The authors propose a number of solutions for addressing these challenges that can serve as guidelines for the HRI community and related fields.

Abstract Image

人机交互中的再现性:推进HRI科学。
综述目的:讨论人机交互(HRI)研究可重复性的现状,该领域特有的挑战,以及社区如何支持可重复性的建议。最新发现:与人工智能、机器人和心理学等相关领域一样,提高研究的可重复性是HRI领域科学知识体系成熟的关键。ACM/IEEE人机交互国际会议在2020年的技术计划中引入了一个关于HRI可重复性的主题,以征集论文,介绍先前研究的复制品或支持研究可重复性的工件。摘要:本综述介绍了HRI研究可重复性的主题,并描述了与HRI 2020可重复性主题相关的最新进展。作为一个涉及技术工件的高度跨学科领域,HRI的可重复性面临着独特的挑战。研究评价和实践中的偏见导致了支持可重复性的挑战,研究人员的培训可以改变以鼓励研究的可重复性。作者提出了一些应对这些挑战的解决方案,可以作为HRI社区和相关领域的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信