Low-Consumption Synaptic Devices Based on Gate-All-Around InAs Nanowire Field-Effect Transistors

IF 4.703 3区 材料科学
Chaofei Zha, Wei Luo, Xia Zhang, Xin Yan, Xiaomin Ren
{"title":"Low-Consumption Synaptic Devices Based on Gate-All-Around InAs Nanowire Field-Effect Transistors","authors":"Chaofei Zha,&nbsp;Wei Luo,&nbsp;Xia Zhang,&nbsp;Xin Yan,&nbsp;Xiaomin Ren","doi":"10.1186/s11671-022-03740-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, an artificial electronic synaptic device based on gate-all-around InAs nanowire field-effect transistor is proposed and analyzed. The deposited oxide layer (In<sub>2</sub>O<sub>3</sub>) on the InAs nanowire surface serves as a charge trapping layer for information storage. The gate voltage pulse serves as stimuli of the presynaptic membrane, and the drain current and channel conductance are treated as post-synaptic current and weights of the postsynaptic membrane, respectively. At low gate voltages, the device simulates synaptic behaviors including short-term depression and long-term depression. By increasing the amplitude and quantity of gate voltage pulses, the transition from short-term depression to long-term potentiation can be achieved. The device exhibits a large memory window of over 1 V and a minimal energy consumption of 12.5 pJ per synaptic event. This work may pave the way for the development of miniaturized low-consumption synaptic devices and related neuromorphic systems.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"17 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-022-03740-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an artificial electronic synaptic device based on gate-all-around InAs nanowire field-effect transistor is proposed and analyzed. The deposited oxide layer (In2O3) on the InAs nanowire surface serves as a charge trapping layer for information storage. The gate voltage pulse serves as stimuli of the presynaptic membrane, and the drain current and channel conductance are treated as post-synaptic current and weights of the postsynaptic membrane, respectively. At low gate voltages, the device simulates synaptic behaviors including short-term depression and long-term depression. By increasing the amplitude and quantity of gate voltage pulses, the transition from short-term depression to long-term potentiation can be achieved. The device exhibits a large memory window of over 1 V and a minimal energy consumption of 12.5 pJ per synaptic event. This work may pave the way for the development of miniaturized low-consumption synaptic devices and related neuromorphic systems.

Abstract Image

Abstract Image

Abstract Image

基于全栅极砷化镓纳米线场效应晶体管的低消耗突触器件
本研究提出并分析了一种基于全栅极砷化镓纳米线场效应晶体管的人工电子突触器件。InAs 纳米线表面沉积的氧化物层(In2O3)是信息存储的电荷捕获层。栅极电压脉冲作为突触前膜的刺激,漏极电流和沟道电导分别作为突触后电流和突触后膜的权重。在低栅极电压下,该装置可模拟突触行为,包括短期抑制和长期抑制。通过增加栅极电压脉冲的幅度和数量,可以实现从短期抑制到长期延时的过渡。该器件具有超过 1 V 的大记忆窗口,而且每次突触事件的能耗极低,仅为 12.5 pJ。这项工作可能为开发微型化低耗能突触器件和相关神经形态系统铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信