Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution.

Yufan Xu, Gerald Sabin, Saurabh Raje, Aravind Sukumaran-Rajam, Atanas Rountev, P Sadayappan
{"title":"Training of Deep Learning Pipelines on Memory-Constrained GPUs via Segmented Fused-Tiled Execution.","authors":"Yufan Xu,&nbsp;Gerald Sabin,&nbsp;Saurabh Raje,&nbsp;Aravind Sukumaran-Rajam,&nbsp;Atanas Rountev,&nbsp;P Sadayappan","doi":"10.1145/3497776.3517766","DOIUrl":null,"url":null,"abstract":"<p><p>Training models with massive inputs is a significant challenge in the development of Deep Learning pipelines to process very large digital image datasets as required by Whole Slide Imaging (WSI) in computational pathology and analysis of brain fMRI images in computational neuroscience. Graphics Processing Units (GPUs) represent the primary workhorse in training and inference of Deep Learning models. In order to use GPUs to run inference or training on a neural network pipeline, state-of-the-art machine learning frameworks like PyTorch and TensorFlow currently require that the collective memory on the GPUs must be larger than the size of the activations at any stage in the pipeline. Therefore, existing Deep Learning pipelines for these use cases have been forced to develop sub-optimal \"patch-based\" modeling approaches, where images are processed in small segments of an image. In this paper, we present a solution to this problem by employing tiling in conjunction with check-pointing, thereby enabling arbitrarily large images to be directly processed, irrespective of the size of global memory on a GPU and the number of available GPUs. Experimental results using PyTorch demonstrate enhanced functionality/performance over existing frameworks.</p>","PeriodicalId":93739,"journal":{"name":"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)","volume":"2022 ","pages":"104-116"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b6/0e/nihms-1819777.PMC9302555.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3497776.3517766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Training models with massive inputs is a significant challenge in the development of Deep Learning pipelines to process very large digital image datasets as required by Whole Slide Imaging (WSI) in computational pathology and analysis of brain fMRI images in computational neuroscience. Graphics Processing Units (GPUs) represent the primary workhorse in training and inference of Deep Learning models. In order to use GPUs to run inference or training on a neural network pipeline, state-of-the-art machine learning frameworks like PyTorch and TensorFlow currently require that the collective memory on the GPUs must be larger than the size of the activations at any stage in the pipeline. Therefore, existing Deep Learning pipelines for these use cases have been forced to develop sub-optimal "patch-based" modeling approaches, where images are processed in small segments of an image. In this paper, we present a solution to this problem by employing tiling in conjunction with check-pointing, thereby enabling arbitrarily large images to be directly processed, irrespective of the size of global memory on a GPU and the number of available GPUs. Experimental results using PyTorch demonstrate enhanced functionality/performance over existing frameworks.

Abstract Image

Abstract Image

Abstract Image

基于分段融合平铺执行的内存受限gpu深度学习管道训练。
在深度学习管道的发展中,训练具有大量输入的模型是一个重大挑战,以处理非常大的数字图像数据集,如计算病理学中的全幻灯片成像(WSI)和计算神经科学中的脑功能磁共振成像图像分析所需要的。图形处理单元(gpu)代表了深度学习模型训练和推理的主要主力。为了使用gpu在神经网络管道上运行推理或训练,PyTorch和TensorFlow等最先进的机器学习框架目前要求gpu上的集体内存必须大于管道中任何阶段的激活大小。因此,针对这些用例的现有深度学习管道被迫开发次优的“基于补丁的”建模方法,即在图像的小片段中处理图像。在本文中,我们提出了一个解决方案,通过使用平铺结合检查点,从而可以直接处理任意大的图像,而不考虑GPU上的全局内存大小和可用GPU的数量。使用PyTorch的实验结果展示了在现有框架上增强的功能/性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信