Vav independently regulates synaptic growth and plasticity through distinct actin-based processes.

The Journal of Cell Biology Pub Date : 2022-10-03 Epub Date: 2022-08-17 DOI:10.1083/jcb.202203048
Hyun Gwan Park, Yeongjin David Kim, Eunsang Cho, Ting-Yi Lu, Chi-Kuang Yao, Jihye Lee, Seungbok Lee
{"title":"Vav independently regulates synaptic growth and plasticity through distinct actin-based processes.","authors":"Hyun Gwan Park,&nbsp;Yeongjin David Kim,&nbsp;Eunsang Cho,&nbsp;Ting-Yi Lu,&nbsp;Chi-Kuang Yao,&nbsp;Jihye Lee,&nbsp;Seungbok Lee","doi":"10.1083/jcb.202203048","DOIUrl":null,"url":null,"abstract":"<p><p>Modulation of presynaptic actin dynamics is fundamental to synaptic growth and functional plasticity; yet the underlying molecular and cellular mechanisms remain largely unknown. At Drosophila NMJs, the presynaptic Rac1-SCAR pathway mediates BMP-induced receptor macropinocytosis to inhibit BMP growth signaling. Here, we show that the Rho-type GEF Vav acts upstream of Rac1 to inhibit synaptic growth through macropinocytosis. We also present evidence that Vav-Rac1-SCAR signaling has additional roles in tetanus-induced synaptic plasticity. Presynaptic inactivation of Vav signaling pathway components, but not regulators of macropinocytosis, impairs post-tetanic potentiation (PTP) and enhances synaptic depression depending on external Ca2+ concentration. Interfering with the Vav-Rac1-SCAR pathway also impairs mobilization of reserve pool (RP) vesicles required for tetanus-induced synaptic plasticity. Finally, treatment with an F-actin-stabilizing drug completely restores RP mobilization and plasticity defects in Vav mutants. We propose that actin-regulatory Vav-Rac1-SCAR signaling independently regulates structural and functional presynaptic plasticity by driving macropinocytosis and RP mobilization, respectively.</p>","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388202/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202203048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modulation of presynaptic actin dynamics is fundamental to synaptic growth and functional plasticity; yet the underlying molecular and cellular mechanisms remain largely unknown. At Drosophila NMJs, the presynaptic Rac1-SCAR pathway mediates BMP-induced receptor macropinocytosis to inhibit BMP growth signaling. Here, we show that the Rho-type GEF Vav acts upstream of Rac1 to inhibit synaptic growth through macropinocytosis. We also present evidence that Vav-Rac1-SCAR signaling has additional roles in tetanus-induced synaptic plasticity. Presynaptic inactivation of Vav signaling pathway components, but not regulators of macropinocytosis, impairs post-tetanic potentiation (PTP) and enhances synaptic depression depending on external Ca2+ concentration. Interfering with the Vav-Rac1-SCAR pathway also impairs mobilization of reserve pool (RP) vesicles required for tetanus-induced synaptic plasticity. Finally, treatment with an F-actin-stabilizing drug completely restores RP mobilization and plasticity defects in Vav mutants. We propose that actin-regulatory Vav-Rac1-SCAR signaling independently regulates structural and functional presynaptic plasticity by driving macropinocytosis and RP mobilization, respectively.

Abstract Image

Abstract Image

Abstract Image

Vav通过不同的基于肌动蛋白的过程独立调节突触的生长和可塑性。
突触前肌动蛋白动力学的调节是突触生长和功能可塑性的基础;然而,潜在的分子和细胞机制在很大程度上仍然未知。在果蝇NMJs中,突触前的Rac1-SCAR通路介导BMP诱导的受体巨噬细胞增多,从而抑制BMP生长信号。在这里,我们发现rho型GEF Vav在Rac1上游通过巨噬细胞作用抑制突触生长。我们也提出证据表明Vav-Rac1-SCAR信号在破伤风诱导的突触可塑性中具有额外的作用。Vav信号通路组分的突触前失活,而不是巨红细胞增多症的调节因子,损害破伤风后增强(PTP)并增强依赖于外部Ca2+浓度的突触抑制。干扰Vav-Rac1-SCAR通路也会损害破伤风诱导突触可塑性所需的储备池(RP)囊泡的动员。最后,使用f -actin稳定药物治疗可以完全恢复Vav突变体的RP动员和可塑性缺陷。我们提出,肌动蛋白调控的Vav-Rac1-SCAR信号分别通过驱动巨噬细胞增多和RP动员来独立调节结构和功能突触前可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信